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Abstract

We introduce a tool that can recognize the specific objects chosen by
the user in indoor scenes derived from range scans, based on the regional
point descriptor called 3D shape contexts. We further extend the use of
our tool to enable a simple form of 3D instance segmentation.

1 Introduction

3D object recognition is a fundamental research question in 3D computer vision.
In this work, we explore the problem of recognizing user-chosen 3D objects in
indoor scenes derived from range scans. Given a point cloud representing an
indoor scene captured by a range scanner that scans a room, our goal is to
recognize the specific objects chosen by the user in the scene, such as chairs,
by comparing them to reference objects that serve as prototypes. We use a
feature-based geometric approach, based on the regional point descriptor called
3D shape contexts [1], to compute the similarity between reference objects and
queried regions in the scene. Our results show that 3D shape contexts can encode
the similarity between objects and thus provide a reasonable object recognition.
The 3D shape contexts of objects can also be reused for further experiments,
such as 3D instance segmentation [2, 3].

2 Background and Related Work

In this section, we discuss the research related to this work, including regional
point descriptors and instance segmentation.

2.1 Regional Point Descriptors

Regional point descriptors have been adopted in many 2D and 3D recognition
tasks [4]. A regional point descriptor constructs features that characterize the
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geometric information of a regional neighborhood surrounding a basis point.
Here, we mainly discuss two kinds of descriptors, namely, the shape context
descriptor and the spin image descriptor.

2.1.1 Shape Context

The shape context descriptor [5] is a means that calculates the point-wise cor-
respondences between a query shape and a reference shape. The shape context
uses a set of points sampled from the contours of the object. Given a shape
represented by a point set P = {p1, p2, ..., pn}, for each point pi (1 ≤ i ≤ n), the
shape context considers the set of the n− 1 vectors that originate from pi to all
other points on the shape as the distribution of relative positions of points that
describes the feature of the shape. Thus, for the point pi, the shape context is
defined as the coarse histogram hi of the relative coordinates of the remaining
n− 1 points, where the kth bin of hi is written as:

hi(k) = #{q 6= pi : (q − pi) ∈ bin(k)}. (1)

Because the histogram defined in Equation 1 is more sensitive to differences
in nearby points, all points on the shapes are converted to log-polar coordi-
nates [5]. With modifications to the shape context, the descriptor with rotation
invariance [6] and the extension to 3D shapes [1] are also provided. In this
experiment, we use the 3D shape context with rotation invariance to recognize
3D objects.

2.1.2 Spin Image

The spin image descriptor [7] is a regional point descriptor based on surface
matching [8]. The idea of the spin image descriptor is to construct 2D images
associated with each oriented point on the surface of shapes, where an oriented
point refers to the 3D point with surface normals. The points in the 2D images
are accumulated into histogram bins, which provide a descriptive image for each
oriented point. The similarity measure of shapes is made based on the similarity
between the images from the surface points. In our experiment, however, since
the point cloud is derived from range scans, we consider the surface normals
of the points to be less reliable. Therefore, we base our object recognition
method on the shape context descriptor, which only requires coordinates of
point positions.

2.2 Instance Segmentation

Recently, there has been an increasing research interest towards fine-grained
segmentation of 3D data using deep learning approaches [9], where instance
segmentation is seen as an important direction that provides a more compre-
hensive and detailed understanding of 3D scenes/objects. Instance segmenta-
tion refers to the task of providing point-level annotations for each instance
given a 3D scene/object, similar to semantic segmentation, which aims to label
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points according to its class and can also be associatively employed to enable in-
stance segmentation [10]. Instance segmentation further differentiates between
different instances of the same class, including both object instances and part
instances. Typically, most 3D instance segmentation methods use a similarity
measure for instance differentiation. For example, SGPN by Wang et al. [2],
which uses PointNet/PointNet++ [11, 12] as a baseline architecture, designs a
double-hinge loss function to learn a pair-wise similarity matrix of points based
on the point features learned by the PointNet model. And similarly, the instance
segmentation method proposed by Zhang and Wonka [3] uses the probability
density function (PDF) to learn a probabilistic spatial embedding that encodes
the point-wise similarity within a shape.

3 Experiment

In this section, we introduce our experiment, including the method, experimen-
tal data, and results.

3.1 Method

Our object recognition method is based on the 3D shape context. First, we
calculate the shape context for the reference shapes, which serves as the reference
descriptor. Then, we look for the regions in the query scene that provide a shape
context most similar to the reference descriptor, using a brute force search. The
similarity between shape contexts is decided by the Euclidean distance. The
tunable parameters in our method are summarized in Appendix A.

3.1.1 3D Shape Context

Similar to the shape context in 2D, the support region for a 3D shape context
is defined in the polar coordinate system, which can be illustrated as a sphere.
The support region is divided into bins by equally spaced boundaries in the
azimuth and altitude dimensions and logarithmically spaced boundaries along
the radial dimension [1]. An example of the support region is illustrated in
Figure 1.

Bin divisions For a support region in the polar coordinate system, the radial
dimension is divided into J bins, the azimuth dimension K bins, the altitude
dimension L bins. The radial divisions are denoted as R = {r1, r2, ..., rJ}, the
azimuth divisions as Θ = {θ1, θ2, ..., θK}, and the altitude divisions as Φ =
{φ1, φ2, ..., φL}. With the first division r1 being the minimum radius rmin and
the last division rJ being the maximum radius rmax, the radius boundaries rj ,
with 1 ≤ j ≤ J , is calculated as:

rj = exp

{
ln(rmin) +

j

J
ln

(
rmax

rmin

)}
. (2)
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Figure 1: A support region for the shape context descriptor, with the radial
dimension undivided, the azimuth dimension equally divided into 12 bins, and
the elevation dimension equally divided into 6 bins.

In our experiment, we divide the support region divided into 5×12×6 = 360
bins, with the radial dimension 5 bins, the azimuth dimension 12 bins, and the
altitude dimension 6 bins, and set the extent of the support region with rmin = 1
and rmax = e4. We accumulate each bin in two manners: (i) using the count
of points that fall inside the bin, as described in Equation 1, and (ii) using the
normalized the number of points, i.e., calculating the proportion of the number
of points inside the bin to the total number of points.

Rotation invariance Though there are some ready-made methods in 2D,
such as measuring angles at each point relative to the direction of its tangent
line, we adopt a more straight forward approach to enable rotation invariance
for shape contexts. 3D shape contexts can be rotated in two different directions,
i.e., azimuthally and altitudinally, while we only consider the azimuthal rotation
as important, as no upside-down objects are observed in the scanned scenes.
For each reference shape, we rotate it azimuthally for 12 times and compute a
shape context for it in each rotation. Thus, no matter how a queried region in
the scene is rotated, its shape context is statistically comparable to one of the
rotated shape contexts of the reference shape.

3.1.2 Scene Querying

We adopt a brute force search to find the corresponding regions in the query
scene that fit the reference objects. Specifically, we use a sliding window, which
is a block that has sufficient space to contain the support region of the reference
descriptor. We move the block at each step for a small distance along the
direction of one axis, to traverse all the consecutive regions in the query scene.
For each region captured by the sliding window, we compute the shape context
for the points in it and compare it to the reference descriptor.
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Figure 2: The query scene.

3.1.3 Similarity Measure

We use the Euclidean distance to measure the similarity between the reference
descriptor h∗ and the shape context h of the queried region. The distance
between h∗ and h is computed as:

d(h∗, h) =

√√√√ N∑
k=1

(h∗(k)− h(k))
2
, (3)

where k (1 ≤ k ≤ N) is the index of bins. In our work, we use N = 360.

3.2 Experimental Data

We experiment with a query scene having 54 chairs in it, as shown in Figure 2,
where the chairs can be roughly divided into two types, i.e., straight leg chairs
and rolling leg chairs. From the scene, we choose two example chairs, i.e., one
from each type, as the reference objects, as shown in Figure 3(a) and Figure 3(b),
respectively.

3.3 Results

We seek to use our method for two applications: (i) object recognition and (ii) a
simple form of instance segmentation.
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(a) (b)

Figure 3: The two example chairs that we choose as reference objects: (a) a
straight leg chair and (b) a rolling leg chair.

3.3.1 Object Recognition

We first test our method for recognizing all chairs, no matter the type, in the
query scene. Assuming that averaging the shape contexts of the example chairs
can generalize the features of the two types of chairs, we use the averaged
shape context as the reference descriptor. We accumulate the histogram bins
of shape contexts in two ways as described in Section 3.1.1 and label the points
as chairs in the top 400 best matching blocks that are most similar to the
reference descriptor. We show that accumulating bins by count can provide
a more reasonable object recognition result, as shown in Figure 4(a), while
accumulating bins by proportion may cause points to be mislabeled, as shown
in Figure 4(b), where we see some structures with corners, such as some parts
of the windows, are mistakenly recognized as chairs, and some chairs are failed
to be recognized.

We also test our method for recognizing the two types of chairs separately,
using the count of points to accumulate the histogram bins. The results for
straight leg chairs and rolling leg chairs are shown respectively in Figure 4(c) and
Figure 4(d), where we label the points in the top 200 best matching blocks. We
see that mislabeling happens when recognizing rolling leg chairs in Figure 4(d),
this may be caused by the missing points in the example chair.

3.3.2 Instance Segmentation

We enable a simple form of instance segmentation with the help of 3D shape
contexts, by iteratively finding and removing the best matching region of each
query. Specifically, we start with the best match of a query, remove the matching
points from the scene, and then repeat this process for the new scene. In this
way, we can avoid the matching of overlapping points, which are caused by
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(a) (b)

(c) (d)

Figure 4: The results of object recognition in the query scene, with points
recognized as chairs marked in red.

Figure 5: The result of instance segmentation, with each retrieved instance chair
marked in a different color.
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the sliding window. This method can retrieve the instance chairs from all the
straight leg chairs in the query scene, as shown in Figure 5, within 30 iterations.

4 Conclusion

In this experiment, we show the feasibility of recognizing objects in indoor scenes
using 3D shape contexts, which can effectively encode the point-wise similarities
between shapes. We find that using the count of points to accumulate the
histogram bins of shape contexts can provide a more reasonable recognition
result than using the proportion of points. We also show the 3D shape contexts
of objects can be used to enable a simple form of instance segmentation.
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A Parameters

In our tool, we allow the user to tweak a few parameters so as to derive different
results. The parameters are listed as below:

• nbins_r: the number of bins in the radius dimension;
• nbins_theta: the number of bins in the azimuth dimension;
• nbins_phi: the number of bins in the altitude dimension;
• rlog_min: the logarithm of the boundary of the first bin;
• rlog_max: the logarithm of the boundary of the last bin;
• normalize: the flag for turning on/off the normalization of the number

of points when accumulating the bins;
• rotation: the flag for turning on/off the rotation invariance;
• length_x: the edge length of the sliding window on the x-axis;
• length_y: the edge length of the sliding window on the y-axis;
• length_z: the edge length of the sliding window on the z-axis;
• step_x: the moving distance of one step of the sliding window on the
x-axis;

• step_y: the moving distance of one step of the sliding window on the
y-axis;

• step_z: the moving distance of one step of the sliding window on the
z-axis.
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