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INTRODUCTION

What constitutes a good 3D generative model? A good generative
model should not only be able to reconstruct well the training shapes,
but should also be able to generalize, which implies that the model
should at least enable a meaningful interpolation between shapes.

We introduce a 3D generative model based on the generalized
autoencoder (GAE) [1], which allows one to control the latent manifold
learned by the model. We guide the construction of a latent manifold of
3D shapes with data similarities computed via the Chamfer distance [2],
and train the model with a loss that is the combination of the traditional
autoencoder (AE) and GAE losses. We show that this model leads to
more meaningful manifold structures and better interpolations between
shapes when compared to previous approaches.

METHOD

Our 3D generalized autoencoder (3D-GAE) uses the GAE loss [1] that
takes each shape x; to reconstruct a set of shapes (Q,, which consists of
the k-nearest neighbors of x; given by the Chamfer distance. We
combine the GAE loss with the reconstruction error of each batch B, so
that our model can better converge to a global optimum:
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where s; ; is the weight given by:
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where we set t = 200 in our implementation.

The network of our 3D-GAE follows a symmetric architecture (Figure 1)
that reconstructsinput shapes represented by 32 X 32 X 32 voxels.
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Figure 1. Network architecture.

Generalized Autoencoder for Volumetric Shape Generation

Yanran Guan  Tansin Jahan Oliver van Kaick
{yanran.guan, tansin.jahan, oliver.vankaick}@carleton.ca

SHAPE SYNTHESIS

We linearly interpolate reference shapes to synthesize new shapes. A
collection of shapes interpolated by the 3D-GAE is shown in Figure 2.
The 3D-GAE generates more meaningful interpolations than the
volumetric autoencoder (3D-AE) and the volumetric variational
autoencoder (3D-VAE) [3], with less spurious parts, see Figure 3.
Moreover, we apply arithmetic operations to the latent vectors learned
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by the 3D-GAE to enable shape extrapolation, see Figure 4.
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Figure 4. Examples of extrapolation via shape arithmetic.
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EVALUATION

For a quantitative evaluation of the
quality of the shapes from different
categories interpolated with the
three methods, we compute their
inception scores [4], see Table 1.
Also, we can see that the 3D-GAE
learns a meaningful latent space
from the multi-dimensional scaling
(MDS) diagram of the dissimilarity
among the latent vectors, as shown
in Figure 5. We can observe how
shapes with similar structure are
grouped closely together in the
same region of the diagram.

Figure 5. MDS diagram.

Chair 3.09+ 0.36 298+ 0.41 292+ 0.38
Lamp 1.57 £ 0.24 1.33+0.31 1.19 £ 0.25
Table 245+ 0.35 2.19+0.28 1.78 £ 0.32

Table 1. Inception scores of interpolated shapes.
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