
3D Functionality Analysis for Shape Modeling via
Partial Matching

by

Yanran Guan

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

November, 2019

➞Copyright

Yanran Guan, 2019

The undersigned hereby recommends to the

Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

3D Functionality Analysis for Shape Modeling via Partial

Matching

submitted by Yanran Guan

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Professor Oliver van Kaick, Thesis Supervisor

Professor David Mould, School of Computer Science

Professor Jochen Lang,
School of Electrical Engineering and Computer Science

Professor Lianying Zhao, Chair,
School of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

November, 2019

ii

Abstract

3D shape modeling is an important research area in computer graphics. Making sure

that the modeled shapes are functional can largely facilitate the modeling process,

since then the user is able to create more realistic shapes. To ensure that the gen-

erated shapes can have complex functionalities, an important requirement for the

modeling system is to enable cross-category modeling (or shape hybridization), i.e.,

combining shapes from different categories to create shapes with multiple function-

alities. However, without a proper method for evaluating the functionality of hybrid

shapes, traditional shape modeling methods are not functionality-aware, and often

produce shapes that are not functionally plausible.

In this thesis, we present an analysis method for evaluating the functionality of

3D shapes, especially hybrid shapes with multiple functionalities. Our method is

based on functionality partial matching, which localizes the functionality analysis

down to the partial shape level. We show that functionality partial matching enables

functionality analysis for hybrid shapes.

Moreover, we incorporate functionality partial matching into an evolutionary

shape modeling framework, which evolves an initial set of shapes through crossover

operations at the level of shape parts, making the evolutionary process functionality-

aware. We show that our functionality-aware model evolution can produce a large

and diverse population of functionally plausible hybrid shapes. We also show that

the generated hybrid shapes can be used to augment existing 3D shape datasets to

train data-driven machine learning methods for shape segmentation.

iii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my thesis super-

visor, Dr. Oliver van Kaick, for his insightful and patient guidance throughout my

research and writing of this thesis. It is my fortune to have a supervisor who cares

so much about my work, and who is not only helpful and knowledgeable but also

understanding and kind.

I would like to thank Dr. David Mould and Dr. Jochen Lang for taking the time

to review this thesis, and for their valuable suggestions to improve the quality of this

work. Also, as a member of the Graphics, Imaging, and Games Lab (GIGL), I would

especially like to thank Dr. David Mould and Dr. Oliver van Kaick for their efforts

of lab management and their teachings and support.

I would also like to thank my lovely friends and colleagues from GIGL and the

School of Computer Science at Carleton University for enriching my life with their

joy, help, and companionship during the past years. I hope that our friendship will

last forever.

Last but not least, I would like to say thank you to my parents for their continuous

support for my study and their constant love throughout my life.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background and Related Work 7

2.1 3D Shape Synthesis and Modeling . 7

2.1.1 Data-Driven Assembly-Based Modeling 7

2.1.2 Evolutionary Modeling . 10

2.1.3 Cross-Category Modeling . 11

2.1.4 Structure-Aware Modeling . 12

2.2 3D Functionality Analysis . 14

3 Evolutionary Shape Modeling 17

3.1 Evolution Setup . 17

3.1.1 Input and Output . 17

3.1.2 Shape Representation . 18

3.1.3 Functionality Labels . 19

3.1.4 Part Groups . 21

3.2 Shape Evolution . 22

3.2.1 Evolutionary Operations . 22

v

3.2.2 Constraints in Evolution . 27

4 Functionality Analysis 29

4.1 Functional Plausibility Modeling . 29

4.1.1 Category Functionality Model 29

4.1.2 Score Normalization . 34

4.2 Shape Validity Verification . 35

4.2.1 Part-Wise Connectivity . 35

4.2.2 Physical Stability . 35

4.2.3 Functional Space . 36

4.3 Functionality Partial Matching . 36

4.3.1 Combinatorial Search . 37

4.3.2 Beam Search . 38

4.3.3 Simplified Search . 41

4.4 Functionality Scoring . 42

4.4.1 Functional Plausibility Score 42

4.4.2 Multi-Functionality Score . 43

5 Experimental Evaluation 44

5.1 Partial Matching vs. Full Matching 44

5.2 Partial Matching Evaluation . 46

5.2.1 Reverse Beam Search . 46

5.2.2 Forward Beam Search . 49

5.2.3 Simplified Search . 52

5.2.4 Best Partial Matching Algorithm 54

6 Applications 56

6.1 3D Functionality-Aware Model Evolution 56

6.1.1 Modeling Scenarios . 58

6.1.2 Evaluation and Comparisons 61

6.2 3D Data Augmentation . 67

7 Conclusion 71

7.1 Limitations . 71

7.2 Future Work . 72

vi

List of References 74

Appendix A Computation of Functionality Distance 79

Appendix B Examples of Beam Search 81

vii

List of Tables

5.1 Comparison between full matching and partial matching. 45

5.2 Results of reverse beam search, with w = 1. 47

5.3 Results of reverse beam search, with w = 2. 48

5.4 Results of reverse beam search, with w = 3. 49

5.5 Results of forward beam search, with nparts = 1. 50

5.6 Results of forward beam search, with nparts = 2. 51

5.7 Results of forward beam search, with nparts = 3. 52

5.8 Results of simplified search. 53

5.9 Analysis of partial matching schemes. 54

6.1 Statistics of structure breaking in the evolved shapes. 62

viii

List of Figures

1.1 An example of functionality partial matching using reverse beam

search, where we search for the subset of parts that provides the high-

est score for the functional category chair. We start with the full shape

and enumerate its subsets by removing parts one at a time. We only

expand a node if it is promising, i.e., it has one of the top two function-

ality scores, as the beam width is 2. The node from level 2 highlighted

in red is returned as the best partial match, since its children (omitted

from the figure) have lower scores. 3

1.2 Starting from a heterogeneous collection of four objects (left) as initial

population, our functionality-aware model evolution can generate a

variety of plausible hybrid shapes. Two of them (middle) exhibit strong

functional similarity to exiting professional designs (right). 4

3.1 Examples of part pairs with different numbers of contact points: four,

two, and one contact point. 18

3.2 Examples of relation graphs for two shapes: a connected graph (left)

and a disconnected graph (right). 19

3.3 The functional patches predicted for a shape belonging to the cart cat-

egory. From left to right are storage, grasping, and rolling, respectively.

The image is courtesy of Hu et al. [23]. 20

3.4 Examples of part groups derived from base groups. Given base group

b1, with functionality label support, we derive part groups g11 and g12

by adding the colored parts to b1, where b1 is formed by symmetric and

disconnected parts. Similarly, we derive g21 and g22 from b2. 21

ix

3.5 Two examples of part group exchange. After a crossover that replaces

the part group gB by gA, we perform an initial placement of gA based on

bounding box alignment. This is followed by a refinement deformation

that aligns contact points (blue and orange circles). The refinement

may be reverted back if some of the contact points are not brought

into proximity (right column example). 24

3.6 Restoring the scale of parts after a crossover. When performing the

crossover between the entire basket and the yellow part group of the

cart shown in (a), the basket is placed and deformed as shown in (b).

Since the part placement significantly deforms the parts, which possess

functionality labels, we restore their proportions. 25

3.7 Two examples of part group insertion. Given a part group in (a), we

find a region in the target shape in (b) with a structure similar to the

context of the part group in the source shape in (a). For example, the

context consists of four support structures (the legs) adjacent to the

basket on the top row, or one support structure (one leg) adjacent to

each wheel on the bottom row. We insert the part group in this region

as shown in (c). 26

4.1 The category functionality model can be defined as: (a) a set of proto-

patches with their unary and binary properties, and (b) a set of weights

that indicate the relevance of each property in describing the function-

ality. The image is courtesy of Hu et al. [23]. 30

4.2 Overview of the use of the category functionality model. (a) A category

functionality model describes functionality in the form of proto-patches

that summarize the functional patches into collections of their prop-

erties. (b) Given an unknown shape as input, the model computes a

category score that measures how well the shape supports the func-

tionality of the category. The image is courtesy of Hu et al. [23]. . . . 31

4.3 The ICON descriptor (right) that describes the interactions of the table

in orange in the scene (left). Using the ICON descriptor, the interac-

tions of the table are organized into a tree structure, where the leaf

nodes (blue and green nodes) represent the interacting objects and the

internal nodes (gray nodes) group the leaf nodes with similar interac-

tions. The image is courtesy of Hu et al. [25]. 32

x

4.4 Normalization of category scores for the shape on the left. The two

numbers on the top of each graph are the scores of the shape for the

shelf and chair categories before and after normalization. The score

distributions for training shapes inside/outside the corresponding cate-

gory are drawn in green and red, respectively. The probabilities p1 and

p2 represent the percentages of shapes having lower scores in the cor-

responding distributions. We see that, even though the original scores

for the two categories are quite close, the normalized score for the chair

category becomes much smaller than that of the shelf category, since

shapes inside the chair category have relatively high scores. 34

4.5 Shapes not having functional space due to obstruction of parts. . . . 36

6.1 Starting from a set of segmented 3D shapes, we construct part groups

for each shape, where a part group gi is composed of a combination of

one or more shape parts (left). We apply crossover and mutation oper-

ations, i.e., part group exchange and part group insertion, as described

in Chapter 3, to create a variety of novel shapes (right). The evolu-

tionary process can be performed in an unconstrained or constrained

manner. In the constrained evolution, the user prescribes functionali-

ties that should appear in the output shapes, e.g., sitting and rolling.

The resulting shapes are then ranked according to their functional

plausibility. Finally, the user can select shapes to be part of the next

generation for further evolution. 57

6.2 A gallery of modeling results from unconstrained evolution obtained

with our functionality-aware approach. The first row shows two initial

populations of four objects each, one per column. The next three rows

show selected offspring from subsequent generations. The generations

contain 78, 113, and 52 shapes in total for the set in the first column,

and 31, 96, and 45 shapes for the set in the second column. 58

xi

6.3 Results of constrained evolution by our functionality-aware modeling

tool. The user evolves the initial population by constraining the off-

spring shapes with the functionality labels placement and grasping,

obtaining the first generation (G1). The user then selects the shapes

marked in blue in the first generation (G1) to be further evolved, to

get the second generation (G2). Finally, the functionality constraints

storage and rolling are included as new preferences into the evolution

of all the shapes, to obtain the third generation (G3). 60

6.4 Starting from a heterogeneous collection of four shapes (in gray) as

initial population, our functionality-aware modeling tool is able to gen-

erate a variety of offspring shapes (in yellow) with a combination of

constrained and unconstrained evolution. Some of the offspring shapes

exhibit forms of cross-category structure breaking. 61

6.5 Results of model evolution where the objects are constrained to possess

2, 3, and up to 5 functionalities. 63

6.6 Results of model evolution from a large initial population (17 shapes)

and with various functionality constraints to demonstrate scalability.

The following populations are generated: sitting + leaning with 141

shapes, placement + storage with 234 shapes, and rolling + grasp-

ing with 258 shapes. Only the top 18 shapes for each set are shown,

according to the ranking by functional plausibility. 64

6.7 Comparison of ranking scores. Three sets of objects with different

levels of priority for plausibility and multi-functionality measures, i.e.,

from low (a) to high (c). 65

6.8 A comparison of our shape generation results to those from Zheng et

al. [65], on an input set from their work. The set of offspring shapes

generated by our method contains not only shapes producible by their

method (shapes in yellow), but also other shapes (in blue) which their

method cannot produce for various reasons discussed in the text. . . . 66

xii

6.9 Comparison to functional hybrid generation by Fu et al. [15]. In each

row, we show the 3D shapes identified by their method (left) that

match a human pose and the hybrid shape produced (middle). Using

the same 3D shapes as the initial population, our method is able to

generate a more diverse set of hybrids (right), including one that well

resembles the outcome from their method, without a human pose as

constraint. 67

6.10 Results showing improved accuracy via data augmentation for learn-

ing shape segmentation, using PointNet, for two sets of shapes. The

ShapeNet training set is augmented progressively with shapes evolved

using our tool. Please refer to the text for details. 68

6.11 Visual results of PointNet segmentation on partial test shapes, using

ShapeNet training set vs. the augmented training set (ShapeNet + our

shapes). 69

B.1 Beam search for functionality partial matching, where we search for the

subset of parts that provides the highest score for the chair category. 82

B.2 Beam search for functionality partial matching, where we search for

the subset of parts that provides the highest score for the desk category. 82

B.3 Beam search for functionality partial matching, where we search for

the subset of parts that provides the highest score for the shelf category. 83

xiii

Chapter 1

Introduction

3D shape synthesis and modeling is one of the important research areas in computer

graphics. During recent years, virtual reality (VR) and augmented reality (AR)

have become increasingly popular and accessible, and there has also been a rapid

development of deep learning and 3D printing technologies. Therefore, it is necessary

to develop methods for 3D content creation, which play key roles in the design and

prototyping of real 3D products, as well as in data augmentation for deep learning.

Current modeling methods have mainly focused on preserving appearance, style,

and aesthetic aspects of the generated shapes. These methods, mostly modeling

shapes from the same functional category1, have largely missed to consider one im-

portant criterion which is functionality [22]. A man-made object that is the result of a

design process typically serves a specific function. Thus, when customizing an existing

design or evolving current designs into a new prototype, the most basic requirement

is for the final products to serve their intended functional purposes. In addition,

rapid developments in geometric deep learning are placing an ever increasing demand

for 3D models that can serve as appropriate training data for learning shape spaces.

Thus, functionality-aware modeling, which is capable of producing functionally plau-

sible 3D shapes in large volumes and varieties, is highly desirable. The analysis of 3D

object functionality plays a key role in functionality-aware modeling: both in guiding

the modeling process and in filtering the modeling results.

In order to generate shapes with specific functionality, another important require-

ment is that the modeling method should allow cross-category modeling (or shape

1In this thesis, we define functional category as the object category that groups objects serving

the same functionality, e.g., all chairs belong to the functional category chair, while all desks belong

to the functional category desk.

1

CHAPTER 1. INTRODUCTION 2

hybridization), i.e., crossbreeding shapes from different functional categories to cre-

ate shapes with multiple functionalities, so that the functional properties of shapes

coming from different categories can be combined in newly generated shapes. Previ-

ous works on co-analysis and data-driven shape processing [61] only work with ho-

mogeneous shapes, while cross-category modeling works with a heterogeneous shape

collection and creates hybrid shapes through composing parts from different objects

or functional categories. As a result, with shape hybridization, the well-known prin-

ciple of structure preservation used by several modeling methods [41] can no longer

be strictly followed in the generated hybrid shapes, where structure refers to the ar-

rangement and relations between shape parts [42]. Some levels of structure breaking

must be allowed. Structure breaking can potentially create new geometric structures.

However, in consequence, the generated hybrid shapes can be hardly categorized into

known functional categories. This brings a new challenge: to adapt and enhance

functionality models which were designed for discriminative analysis of single cate-

gories [23, 25, 47] to serve shape modeling. In particular, we must address the issue

that new cross-category hybrid shapes may arise whose functionality models cannot

be learned in advance.

Thus, in this thesis, we propose the notion of functionality partial matching for

analyzing the functionality of hybrid shapes. Based on the functionality models de-

veloped by Hu et al. [23] that learn the functionality of objects per category, func-

tionality partial matching is a means for localizing the functionality analysis from the

category/object level down to the patch/part level. Specifically, functionality partial

matching refers to the search for the subset of parts, i.e., partial shape, from a hybrid

shape that best fits to one of the functional categories provided by a pre-learned set

of category functionality models. In this thesis, the best fit is defined as a partial

shape that provides the highest functionality partial matching score.

We propose different search heuristics for implementing functionality partial

matching. Specifically, we evaluate variations of beam search and compare them

to baselines such as a full combinatorial search and a simplified search. An example

where reverse beam search is used for functionality partial matching is illustrated

in Figure 1.1. Based on the functionality partial matching implemented with our

heuristics, we further define a scheme for the evaluation of the functionality of a

hybrid shape, combining the functionality partial matching scores of known func-

tional categories into a functional plausibility score for evaluating plausibility and a

CHAPTER 1. INTRODUCTION 3

0.572 0.429 0.304 0.184 0.005

0.962 0.339 0.259 0.0040.000
... ...

Figure 1.1: An example of functionality partial matching using reverse beam search,
where we search for the subset of parts that provides the highest score for the
functional category chair. We start with the full shape and enumerate its subsets
by removing parts one at a time. We only expand a node if it is promising, i.e.,
it has one of the top two functionality scores, as the beam width is 2. The node
from level 2 highlighted in red is returned as the best partial match, since its
children (omitted from the figure) have lower scores.

multi-functionality score for evaluating the diversity of the generated shapes.

As an important application of our functionality analysis study, we incorporate

functionality partial matching into an evolutionary shape modeling framework to de-

velop an exploratory-based shape modeling tool that can evolve a set of 3D objects

in a functionality-aware manner, so as to enable functionality-aware model evolu-

tion. Given an initial population of 3D objects belonging to one or more functional

categories, our modeling tool produces generations and generations of functionally

plausible hybrids or crossbreeds between parents from preceding generations. In this

thesis, we experiment with a dataset of furniture shapes and show that our modeling

tool can generate a large amount of hybrid furniture with new designs. For example,

we could crossbreed a rocking crib and a chair into a combo which can comfort both

a parent and a baby; see Figure 1.2 (top). Our main goal is for the evolutionary

modeling tool to produce a large number of functionally plausible 3D prototypes that

are both “fit” and “diverse” [63].

The evolutionary approach can be used as a tool for either constrained modeling

or open-ended exploration to possibly inspire new shape designs. Specifically, starting

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Starting from a heterogeneous collection of four objects (left) as initial
population, our functionality-aware model evolution can generate a variety of
plausible hybrid shapes. Two of them (middle) exhibit strong functional simi-
larity to exiting professional designs (right).

with an initial population of segmented 3D objects, our modeling tool first derives

a functional understanding of the input. Then, we evolve the population, where the

objects undergo stochastic part recombination, mimicking crossovers in evolutionary

biology. Our evolution operates at the part group level, where a part group consists

of one or more related shape parts. Evolution is applied to a set (current population)

of shapes, where each modeling operation is a crossover (i.e., an exchange of part

groups between two 3D shapes), or mutation (i.e., part insertion into a 3D shape),

followed by part (group) deformation and connection to improve plausibility of the

offspring shape. At each iteration of evolution, we use functionality partial matching

to perform an analysis of the functionality of the offspring shapes, ranking them by

their functional plausibility scores as in a design gallery [38, 63]. Then, we select

the top k offspring shapes while respecting user-expressed preferences to form the

population for the next iteration of evolution; see Figure 6.1. In addition, our tool

allows users to restrict or steer the model evolution with constraints defined via

functionality labels, such as sitting, leaning, and storage. For example, the user can

pick functionality labels and constrain the model evolution to produce offspring shapes

possessing the desired functionalities. In summary, our modeling tool includes two

types of user interactions as aforementioned: (i) the selection of preferred offspring

shapes and (ii) the selection of functionality labels, such that the modeling process is

CHAPTER 1. INTRODUCTION 5

easy-to-use for users without professional 3D design skills.

Another application of our modeling tool is data augmentation. We show that

the hybrid shapes generated by our functionality-aware model evolution can comple-

ment existing datasets such as ShapeNet [6] and improve the diversity of training

shapes, leading to improved results for data-driven segmentation schemes, especially

for atypical inputs such as shapes with missing parts.

To summarize, the main contributions of our work are:

1. We adapt the functionality model of Hu et al. [23], that is defined for object cat-

egories, to the functionality analysis of hybrid shapes that hold cross-category

properties. The key new concept developed is functionality partial matching,

which enables us to evaluate functional plausibility of new shapes not as a whole,

but in parts, with respect to learned functionality models.

2. We apply functionality partial matching into an evolutionary shape modeling

framework and develop the first functionality-aware modeling tool for 3D ob-

jects, resulting in generations of functionally plausible and diverse offspring

shapes in the form of hybrid shapes. Our modeling tool is interactive and in-

volves only light user interactions to allow user selection of offspring shapes and

constrained modeling.

3. We demonstrate the potential of our functionality-aware shape modeling

method for data augmentation. We use the generated hybrid shapes to augment

training data for one key application: shape segmentation of partial shapes.

Note that the evolutionary modeling tool was developed in conjunction with

Dr. Han Liu, who was a postdoc at Carleton University, and the project was con-

ducted as a collaboration among several researchers [20]. My personal contribution

lies in the investigation of the heuristics for functionality partial matching (Contri-

bution 1), integrating the partial matching into the evolutionary approach, and the

data augmentation study (Contribution 3).

The remainder of this thesis is organized as follows. In Chapter 2, we review pre-

vious literature related to the problem of 3D functionality analysis for hybrid shape

modeling. In Chapter 3, we introduce the evolutionary shape modeling framework

that we adopt for generating hybrid shapes. In Chapter 4, we describe the proposed

method, functionality partial matching for analyzing the functionalities of hybrid

CHAPTER 1. INTRODUCTION 6

shapes. Chapter 5 presents a comparative study of different algorithms for function-

ality partial matching. In Chapter 6, we demonstrate the applications of our study,

i.e., 3D functionality-aware model evolution and 3D data augmentation, as well as

their results. Lastly, Chapter 7 provides our conclusions, and discusses limitations

and possibilities for future work.

Chapter 2

Background and Related Work

In this chapter, we first review methods for 3D shape synthesis and modeling, and

then discuss recent work that analyzes the functionality of 3D shapes.

2.1 3D Shape Synthesis and Modeling

Classical shape modeling in computer graphics is subject to precise geometric con-

straints or controls, while fulfilling low-level modeling criteria such as surface smooth-

ness and detail preservation [56]. Recently, much effort has been devoted to structure-

preserving shape processing [42], with more emphasis on analyzing and manipulating

part structures that are characteristics of man-made shapes. With geometric mod-

eling playing an increasing role in the design and customization of 3D products, the

focus of research and development is naturally shifting to higher-level modeling cri-

teria such as creativity and functionality. In this section, we discuss the higher-level

shape modeling literature covering four fronts: (i) data-driven assembly-based mod-

eling, (ii) structure-preserving modeling, (iii) evolutionary modeling, and (iv) cross-

category modeling.

2.1.1 Data-Driven Assembly-Based Modeling

The idea of “modeling by example” was first proposed by Funkhouser et al. [17], who

pioneered the direction of data-driven 3D shape modeling via search-and-assemble

schemes applied to object parts [61]. In data-driven assembly-based modeling, parts

from 3D object exemplars are substituted into other objects or recombined to form

new object prototypes. Due to the large amount of example shapes and parts that are

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

involved in assembly-based modeling, different mechanisms were developed to decide

the suitable part for substitution.

In the work of Funkhouser et al. [17], a system was proposed that allows a user to

browse a large database of shapes and recombine parts from the shapes to generate

new shapes. The problem of searching for similar parts in the database is addressed by

using geometric shape similarity defined between two shapes as the dot product of the

voxel rasterization of the first and the square distance transform of the second. Using

a similar mechanism, Kraevoy et al. [32] designed a modeling system that creates

new shapes by shuffling interchangeable parts between existing shapes. In their work,

compatible segmentations of shapes are first computed based on the metrics of part

convexity and compactness, to find the correspondences between the interchangeable

parts in different shapes. Chaudhuri and Koltun [8] proposed a system that generates

data-driven part suggestions that can be added as components to the query shapes.

In their work, a histogram similarity measure is used to calculate the correspondence

score between the sample points in a database shape and the sample points in the

query shape, so that the substitutable parts in the database shape can be found as

the part suggestions. Recently, Gonzalez and van Kaick [19] proposed an approach

to synthesize new shapes from a collection of fined-grained parts, where the synthesis

is guided by a shape template and new shapes are generated via replacing parts in

the template with compatible new parts in the part collection. The compatible part

replacement is found by a similarity metric in the form of shape energy consisting of

a unary term, that measures the similarity between the template and sampled part,

and a pairwise term, that measures the consistency between neighboring parts.

Probabilistic reasoning is another approach to define exchangeable parts. Chaud-

huri et al. [7] first proposed a probabilistic model using a Bayesian network that learns

probabilistic dependencies between part labels, geometric styles, and adjacencies over

a set of segmented and labeled shapes. The learned probabilistic model is applied

in a shape synthesis system, where a list of suggested parts ranked by relevance is

presented to the user for part recombination. In the work of Kalogerakis et al. [29], a

component-based probabilistic model, which is composed of a set of variables describ-

ing shapes as well as components of shapes, including shape styles, component styles

and numbers, and component adjacencies, was learned over a family of input shapes

that are consistently segmented and labeled into semantic parts. The parts of the

CHAPTER 2. BACKGROUND AND RELATED WORK 9

input shapes can then be assembled into new shapes according to the learned proba-

bility distributions. Similarly, Huang et al. [26] presented a shape synthesis method

based on learning a probabilistic generative model from a collection of shapes. Differ-

ently from the aforementioned works, the method only requires as input one shape per

family to be pre-segmented and estimates the part segmentation of shapes by jointly

learning a probabilistic deformation model. With the learned shape segmentation,

the generative model, which follows the structure of a deep Boltzmann machine [50],

encodes the statistical relationships of corresponding surface points and parts in a

hierarchical manner. The generative model can be employed for tasks such as opti-

mizing shape correspondence [59] as well as synthesizing new shapes via recombining

and deforming parts from the input collection.

Suitable part suggestions for part recombination can also be decided using a fuzzy

correspondence, which estimates the similarity relations between shapes and parts.

In their evolutionary modeling method, Xu et al. [63] introduced the operators of part

crossover and part mutation, that exchange parts across shapes. The method decides

which parts should be exchanged according to a fuzzy part correspondence. To define

the fuzzy part correspondence, shapes are aligned in an upright orientation [14], and

part proportion variations are factored out by anisotropic part scaling [62]. The

fuzzy correspondence is then calculated based on the Hausdorff distance between

the oriented bounding boxes of two parts. With part crossover and mutation, a

large set of diverse 3D shapes, especially man-made shapes, can be created from a

small input set. Concurrently, Kim et al. [31] proposed to use fuzzy correspondences

between feature points, which is computed from a set of pairwise shape alignments via

diffusion maps, to understand similarity relations across 3D shape collections. The

similarities then form the basis of an interactive exploration tool that allows a user

to browse shapes according to different exploration criteria such as selected regions

of an object. The tool returns a sorted list of objects based on their similarity within

the selected regions.

Moreover, without explicitly defining a metric of part correspondence, some

substructure-based modeling methods have been put forward, where substructure

refers to a certain subset of shape parts that preserves a special arrangement among

the parts. Zheng et al. [65] proposed to detect symmetric functional arrangements

(sFarr-s) from shapes, where an sFarr is a symmetric substructure composed of

three parts, e.g., a chair seat and two symmetric legs. Their method generates new

CHAPTER 2. BACKGROUND AND RELATED WORK 10

shapes by replacing the sFarr-s among existing shapes. As an extension to sFarr-s,

Huang et al. [27] introduced the concept of support substructure, which is a subset

of object parts that provide support and stability to a shape. Shapes with detected

support substructures are encoded into graphs that describe the support relations

between parts, to enable part reshuffling between different shapes and part rear-

rangements in the same shape by exchanging compatible supporting or supported

components. Similarly, Su et al. [57] proposed to recombine functional substructures

from different classes of 3D models using a reference shape that has multi-functional

components and a complicated structure. The corresponding functional substruc-

tures from shapes stored in a database that match the ones in the reference shape

are found by minimizing an energy function that measures the similarity between the

substructures. To synthesize new shapes, the pairs of substructures are iteratively

selected from the reference and replaced with corresponding database substructures.

The shape modeling method in our work is also data-driven and assembly-based,

performing recombination at the part group level. Different from traditional model-

ing methods, we employ functionality as the constraint for the recombination of part

groups, thus incorporating functionality analysis into the shape modeling process.

Our method allows to generate shapes with multiple functionalities in a functionality-

aware manner. Moreover, all of the methods mentioned above perform part compo-

sitions between shapes belonging to the same category, while our method can span

different categories.

2.1.2 Evolutionary Modeling

In his landmark book On the Origin of Species, Charles Darwin pointed out that

all species are evolved from a common ancestor [11]. Inspired by the theory of evo-

lution in biology and the adaptive nature of organisms, the concept of evolutionary

computing, which consists in the iterative update of an initial set of candidate so-

lutions by applying recombination and mutation to the solutions [12], has been put

forward to solve various practical problems, such as optimization [5], modeling [13],

and simulation [58].

The seminal works of Karl Sims [54, 55] introduced evolutionary modeling to the

graphics community for the synthesis of novel creatures with desired physical be-

havior. In his works, each shape is composed of a set of 3D blocks, modeled by

a directed graph, which describes the genotype, and a rooted tree, which describes

CHAPTER 2. BACKGROUND AND RELATED WORK 11

the phenotype. Both the shape and motion of a creature are evolved simultane-

ously using genetic algorithms, such as crossover and grafting, for recombining the

genotype graphs. Many follow-up works have appeared since. The virtual labora-

tory Creature Academy proposed by Pilat and Jacob [46], using the same modeling

paradigm as Sims’ to generate artificial creatures, controls the evolution of artificial

creatures through parallel tournament-selection. Lipson and Pollack [35] proposed an

evolutionary system for automatic design and manufacturing of robotic forms. Funes

and Pollack [16] adopted an evolutionary framework in the design and generation of

Lego structures. Moreover, based on mutation-guided evolution, Jon McCormack [39]

first proposed to evolve L-system grammars to produce new 3D shapes. The same

method is applied in 3D aesthetic modeling by Bergen and Ross [3], who proposed to

automatically evolve 3D mathematically aesthetic shapes. In short, the idea of evo-

lutionary modeling has been adopted in the design and generation of multiple forms

of objects or structures, apart from the aforementioned examples, also for curvilinear

surfaces [21], plants [28], shelters [44], and building architecture [10].

In our work, we adopt an evolutionary framework for shape modeling. Most closely

related and inspiring to our modeling method is the “fit and diverse” modeling tool of

Xu et al. [63], which evolves a set of 3D shapes via part crossover and mutation, while

utilizing a design gallery [38] interface. In “fit and diverse”, a crossover refers to the

exchange of parts between the parent shapes and a mutation is defined as the defor-

mation of randomly selected parts in an individual shape. Our evolutionary modeling

method follows the same evolution paradigm as “fit and diverse”, but distinguishes

itself from previous works by considering object functionality. Also, “fit and diverse”

only evolves shapes of the same category, while our evolution is cross-category, which

is further explained in Section 2.1.3.

2.1.3 Cross-Category Modeling

In order to achieve shape hybridization (creating a shape with multiple functional-

ities), our evolutionary shape modeling framework synthesizes hybrids from initial

shapes belonging to different functional categories. However, such cross-category fea-

ture is rarely seen in the existing shape synthesis methods. Some substructure-based

modeling methods, as introduced in Section 2.1.1, do generate cross-category shapes.

For example, the modeling tool developed by Zheng et al. [65] allows the sFarr-s to

be transplanted across object categories. The key difference to our method is that

CHAPTER 2. BACKGROUND AND RELATED WORK 12

their substructure replacements still preserve the objects’ overall structures, while

we seek to generate objects with structure breaking, which is further discussed in

Section 2.1.4. Also, the detected and replaced sFarr-s are rather specific structures.

In contrast, our tool for cross-category modeling extracts functional properties of 3D

objects from a more generic analysis, and with structure breaking, the shapes re-

sulting from part crossover exhibit much greater variety; see Figure 6.8. The shape

reshuffling method introduced in the work of Huang et al. [27], which is based on the

detection of support substructures, allows both in-category and cross-category shape

synthesis. However, since the structural organization of object parts is already defined

by the support substructure, the synthesized shapes will keep the same structure as

the existing shapes. Moreover, the modeling method of Su et al. [57], which is also

based on substructure transplanting, enables the synthesis of cross-category hybrid

shapes under the guidance of a reference shape. In their method, the suitable sub-

structures are selected from database shapes and then recombined into new shapes

while reusing the design of the reference shape. Therefore, the main structure of the

synthesized shapes is the same as that of the reference.

More closely related to our modeling method is the recent modeling tool by Fu

et al. [15] for generating functional hybrids. Their tool also allows cross-category

part recombination, but the key difference is that their modeling paradigm is based

on fitting 3D parts and shapes to an input human pose. Specifically, their method

first identifies groups of candidate shapes which provide affordances that support the

human pose, i.e., the objects have functionalities compatible with the input pose, and

then recombines shape parts to form a well-connected composite shape. In contrast,

our functionality analysis is entirely based on shape geometry. More importantly,

our model evolution operates on 3D shape collections and allows the generation of a

larger volume and variety of functionally plausible hybrids, not just one model to fit

a particular affordance constraint.

2.1.4 Structure-Aware Modeling

Shape structure refers to the arrangement and relations between shape parts [42].

Shape structure can reflect the properties of shapes at a high-level, especially for man-

made shapes, and can arise from physical constraints, functional or aesthetic designs,

and economic considerations. Structure-aware modeling, instead of manipulating

lower-level features of a shape, such as local geometric details, focuses on processing

CHAPTER 2. BACKGROUND AND RELATED WORK 13

structures of shapes, and can preserve existing structures when shapes are modified,

or generate shapes with new structures.

Preserving structural characteristics of shapes, such as symmetry and parallelism,

has drawn increasing interest in recent work on shape modeling and shape editing [42].

This type of modeling is naturally performed only over shapes which belong to the

same category, since the structures shared among shapes are discovered and pre-

served. For example, most of the existing assembly-based shape synthesis methods,

as discussed in Section 2.1.1, synthesize new shapes by recombining parts from dif-

ferent shapes while fixing the shape structure [7, 8, 17, 19, 26, 27, 29, 57, 63, 65]. Also,

structure preservation is important in shape editing. Gal et al. [18] introduced the

analyze-and-edit approach in their iWires work, where input shapes are first ab-

stracted as a set of descriptive wires, which are then preserved during shape editing.

In iWires, structural characteristics are considered as the essence of man-made ob-

jects. Following up the same idea, numerous methods for structure-preserving shape

editing have been proposed, such as the component-wise controller method for shape

manipulation of Zheng et al. [66], the interactive tool for retargeting irregular 3D

architecture models by Lin et al. [34], the algebraic regularity model for shape editing

by Bokeloh et al. [4], and the semantic-based shape deformation method by Yumer

et al. [64].

In this context, detection and extraction of structural characteristics, especially

symmetric structures [41], plays a key role in structure-preserving processing. Podolak

et al. [48] proposed a planar reflective symmetry transform that captures a continuous

measure of the reflectional symmetry of a shape with respect to all possible planes.

Mitra et al. [40] proposed to detect partial or approximate symmetries based on

accumulating local evidence of pairwise symmetries in a transformation space. Simari

et al. [53] introduced a method that detects global and local approximate planar

symmetries in 3D meshes using a robust statistical approach. They further proposed

the folder tree data structure that encodes shape symmetries in the form of non-

redundant regions and reflection planes. Apart from symmetry, Pauly et al. [45]

presented a computational framework for discovering more general regular geometric

structures, involving rotation, translation, and scaling of repetitive elements.

More recently, methods that leverage deep learning for abstracting shape struc-

tures have been proposed. In the work of Balashova et al. [1], a structure detector

CHAPTER 2. BACKGROUND AND RELATED WORK 14

network, which is trained based on user-selected landmark points on shapes that rep-

resent shape structures, was incorporated into a shape synthesis network to guide

the generation of shapes with consistent structures. SAGNet of Wu et al. [60] jointly

considers the structure and the geometry of shapes when synthesizing shapes, where

shape structures are learned as pairwise relationships between the bounding boxes

of parts. Similarly, in the StructureNet of Mo et al. [43], shape structures are rep-

resented by N -ary trees of parts and the network learns a latent space that encodes

shape structures using two types of structure-preserving losses, namely, a symmetry

loss that encourages to preserve reflective symmetries in the subtrees of symmetric

parts, and an adjacency loss that minimizes the minimum geometry distance between

adjacent parts.

Instead of preserving shape structures, our evolutionary modeling tool seeks to

generate functionally plausible offspring shapes which may not preserve prominent

structures of their parents. Specifically, structure breaking is possible since our func-

tional plausibility score is not always positively correlated with structure preservation

— it does not account for structural constraints such as symmetry. As well, the com-

position of part groups does not need to respect symmetry, e.g., one armrest of a

chair can form its own part group. Our evolution is not designed to be strictly

functionality-preserving either, as the hybrids can typically break some aspects of the

functionalities of their parents. We only consider basic structures of shapes, such as

part adjacency and connectivity.

2.2 3D Functionality Analysis

Recently, there has been increasing interest in studying 3D shapes from a functional

perspective [22]. Existing works on this topic have all focused on characterizing,

comparing, or categorizing 3D objects based on their functionality, where the func-

tionality is typically inferred from the geometry of the shapes and interactions of the

shapes with other objects or agents.

The early work of Bar-Aviv and Rivlin [2] introduced a method for classifying

functional 3D objects using the simulation of embodied agents, such as virtual hu-

mans. Using the simulation of human poses, Kim et al. [30] proposed Shape2Pose,

an affordance-inspired shape analysis tool. Given an input 3D shape, Shape2Pose

CHAPTER 2. BACKGROUND AND RELATED WORK 15

predicts a corresponding human pose, which is composed of contact points and kine-

matic parameters, to infer a possible human interaction with this object. Savva et

al. [51] also used human poses to predict regions in 3D scenes where actions are likely

to take place, to learn the correlation between the geometry and functionality of 3D

environments. Furthermore, the probabilistic model proposed by Savva et al. [52]

encodes the interactions between a human pose and objects in a scene into a set of

prototypical interaction graphs (PiGraphs), which is a human-centric representation

of interactions that captures physical contacts and visual attention linkages between

the human pose and 3D geometry. Instead of using a specific agent, Pirk et al. [47]

introduced a more general means of understanding object interactions. In their work,

a descriptor characterizes proximal interactions between a target object and a motion

driver, where motion driver refers to anything that interacts with a static object,

including an agent such as a human pose, also including other objects such as a hu-

man hand or wind. The descriptor is computed based on the trajectories of motion

particles on the surface of the motion driver while an action takes place.

Hu et al. [25] proposed to analyze object functionality from interactions between

multiple objects in scenes rather than analyzing single objects in isolation. The anal-

ysis is carried out with a geometric functionality descriptor, the interaction context

(ICON) descriptor, that models the functionality of an object within a scene, and

takes both object-to-object and human-to-object interactions into account if they are

present in the input scene. The ICON descriptor is represented as a tree structure,

where the leaf nodes represent the interacting objects and the internal nodes group

the leaf nodes with similar interactions. Thus, the similarity between functionalities

of two scenes can be estimated by comparing their corresponding ICON trees via

subtree isomorphism.

Based on ICON, a co-analysis method was proposed by Hu et al. [23] for func-

tionality analysis of shapes given in isolation. In the co-analysis method, ICON

descriptors are first computed for a training set of shapes, deriving structures called

proto-patches. A proto-patch is a patch prototype supporting a specific type of in-

teraction, and is derived from the interaction regions of all the first level nodes of

an ICON hierarchy. The functionality model of an object is then characterized as a

composition of its proto-patches, along with their unary and binary properties, and a

set of weights defining the relevance of each property in representing the functionality

of the category. The model can then be used to predict the functionality of single

CHAPTER 2. BACKGROUND AND RELATED WORK 16

objects given in isolation. Since this model forms the basis of our work, we provide

more details about it in Section 4.1.1.

Recently, a deep learning based method for shape functionality analysis was pro-

posed by Hu et al. [24], which is also based on an analysis of interactions. In their

work, the functional similarity neural network fSIM-NET can, given an input query

object in isolation, generate scenes that reveal the functionality most similar to that

of the query object.

All of these methods are primarily targeted at discriminating different types of

functionalities or interactions. Thus, it is difficult to apply them without significant

modifications to analyze hybrid shapes, as in a single hybrid shape there may exist

multiple partial shapes serving different functionalities. In our work, we base the

functionality analysis method on the category functionality model developed by Hu

et al. [23]. However, our model is localized to allow functionality partial matching,

which is essential when defining the plausibility of hybrid shapes which belong to

multiple functional categories.

Note that, as an application of their functionality model, Hu et al. [23] were able to

produce some limited forms of hybrid shapes. However, the parent shapes are given

and the modeling is manual, with functionality prediction results guiding the user

in choosing where hybridization can occur. Most importantly, their hybridization is

designed to preserve the functionality of a given shape.

Chapter 3

Evolutionary Shape Modeling

We adopt an evolutionary shape modeling framework that generates 3D shapes, possi-

bly with hybrid functionality, from a set of parent shapes. Each parent shape belongs

to one functional category only, such as chair, desk, cart, and shelf. The evolutionary

process follows a set evolution paradigm [63] that starts with an initial population of

segmented shapes. After pre-processing the input shapes, evolutionary operations are

performed over the shapes at the part group level. In this chapter, we give a detailed

description about the shape evolution method, including the setup of the evolution

and the evolutionary operations.

3.1 Evolution Setup

In this section, we describe the setup of evolution, including the input and output of

the method, and the pre-processing of the input.

3.1.1 Input and Output

The input to the evolutionary shape modeling framework, which serves as the initial

population for the evolution, is a set of 3D shapes. Each shape comes with a fine-

grained segmentation into meaningful parts, where we extract contact points between

adjacent parts and encode the part-wise connectivity of a shape into a relation graph

(discussed in Section 3.1.2). We then identify the parts that enable the functional-

ities of the shapes and assign corresponding functionality labels to them (discussed

in Section 3.1.3). Based on the labeled parts, we group together parts with the same

functionality label and add their adjacent parts to create part groups, the level at

17

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 18

Figure 3.1: Examples of part pairs with different numbers of contact points: four,
two, and one contact point.

which the evolution is operated (discussed in Section 3.1.4). The input shapes are

also roughly aligned in a consistent manner. The goal of the evolution is to stochas-

tically create a large variety of shapes from a small set of parent shapes, according

to guidance from functionality models and possibly the user. Thus, the additional

work of segmenting the input shapes is compensated by the fact that the method

can then create a large and diverse set of offspring. Iteratively, we perform crossover

operations on selected pairs of shapes from the population to produce potential off-

spring. After several iterations, the output of the evolution is a population of shapes,

where each shape combines parts coming from multiple parent shapes, possibly from

distinct categories.

3.1.2 Shape Representation

Since the input shapes are given as triangle meshes, we represent them as sets of

points uniformly sampled over the shape surfaces, to ensure that the analysis is not

affected by the non-uniformity of the tessellations. We use the point sets to detect

contact points between adjacent parts of each shape, which indicate how the parts

connect to each other. As illustrated in Figure 3.1, our method considers three types

of contact points: (i) contact points that connect four corners of a part; (ii) contact

points that connect two extremities of a part; (iii) single contact points. These types

of contact points cover the majority of part connections and allow us to appropriately

position parts by defining automatic connection rules.

The contact points are extracted in a semi-automatic manner. First, we find the

set of points of one part that are the closest to points of the other part according

to a small threshold, to define a set of boundary points. The threshold is set as 1%

of the bounding box diagonal of the shape. The union of boundary points for two

parts are defined as their boundary region. Next, for each pair of neighboring parts,

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 19

Figure 3.2: Examples of relation graphs for two shapes: a connected graph (left)
and a disconnected graph (right).

we detect the pair of closest points on each part within the boundary region and take

the midpoint of these points as the contact point. Then, for the pair of neighboring

parts having more than one contact points, the user can manually specify additional

contact points or adjust them manually.

Given all the contact points, a shape is abstracted as a relation graph, where each

part corresponds to a node in the graph, and two nodes are connected by an edge

if the two parts possess at least one contact point in common. Examples of relation

graphs are shown in Figure 3.2. The graphs capture the part-wise connectivity and

the structure of the shapes and are used to guide the placement of parts during the

evolution.

3.1.3 Functionality Labels

We employ two types of functionality labels in the modeling framework: (i) part

labels, which describe the functionality of a part, e.g., rolling for a wheel or sitting for

a chair seat; (ii) category labels, which denote the functionality of an entire category of

shapes, e.g., chair for shapes that can be used as chairs. To avoid confusion between

these two types of labels, we call the former functionality label or simply label of a

part and the latter the functional category or simply category of the shape.

Part Labels

Before starting the evolution, the parts of each shape are labeled with functionality

labels. These serve as constraints for the evolutionary operations. To obtain the

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 20

Figure 3.3: The functional patches predicted for a shape belonging to the cart

category. From left to right are storage, grasping, and rolling, respectively. The
image is courtesy of Hu et al. [23].

functionality labels for shapes of known categories, we first predict functional patches

over the initial population of shapes with the functionality models of Hu et al. [23].

The prediction provides a weight field over the input point cloud, which defines the

probability that each point belongs to a patch that provides a certain functionality,

such as sitting or leaning. These patches associated with a functionality are called

functional patches. An example of predicted functional patches is visualized in Fig-

ure 3.3, and more details about the functionality models and prediction are given in

Chapter 4.

Given the weight fields predicted by the functionality models for each functional

patch, we assign to a part the functionality label of the functional patch that has the

highest sum of weights in the part. If the sum of weights is below a threshold of 0.5 for

all the functional categories (where the weights for a functional patch sum up to 1),

then we leave the part unlabeled. If the input shape belongs to an unknown functional

category, the user can manually annotate its parts with custom functionality labels,

e.g., rolling and rocking. Note that some parts may remain unlabeled. We keep

track of symmetries among shape parts by storing them in a list. In the evolutionary

modeling framework, symmetries are manually specified by the user, but any existing

method for automatically detecting part symmetries [41] can be incorporated into the

framework.

Category Labels

We assign a single functional category to each shape. Then, when shapes are evolved

from two parents, they receive all the functional categories from their parent shapes.

The functional categories indicate which category functionality models should be

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 21

: support

: storage

b1

b2

g11 g12

g21 g22

Figure 3.4: Examples of part groups derived from base groups. Given base group
b1, with functionality label support, we derive part groups g11 and g12 by adding
the colored parts to b1, where b1 is formed by symmetric and disconnected parts.
Similarly, we derive g21 and g22 from b2.

used for evaluating the functionality of the shapes, which we describe in more detail

in Section 3.2.

3.1.4 Part Groups

Our shape evolution is executed by crossover operations defined at the part group

level, where each part group consists of one or more parts from a shape in the pop-

ulation and represents a partial shape taken from the original shape. We create

multiple candidate part groups for each shape by enumerating possible combinations

of its parts. We use a heuristic based on the functionality part labels to form the

part groups, which helps us to avoid the combinatorial explosion of enumerating all

possible part groups.

Specifically, we first group together adjacent parts with the same functionality

label, which form base groups from which we build the final part groups. For each of

these base groups, we create several part groups by adding different combinations of

parts that are adjacent to the base group, with a breadth-first search. Note that the

expanded parts need to be either all unlabeled or share a same label, which can be

distinct from the initial label. A base group by itself is also considered a valid part

group. Part groups created in this manner are restricted to one or two functionality

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 22

labels, and thus form meaningful structures for exchanging and recombining the func-

tionalities of the input shapes. We also allow symmetric parts to form base groups for

further enumeration, implying that part groups can be disconnected. Finally, individ-

ual symmetric parts can also form the basis of part groups, so that structure breaking

is allowed in the evolution. Figure 3.4 shows examples of part groups created for two

different types of base groups of a shape.

3.2 Shape Evolution

Our shape evolution is implemented by the evolutionary operation called crossover

that operates at the part group level (discussed in Section 3.2.1), and guided by user

preferences, including preferred functionality labels and preferred offspring shapes,

also including a selection of shape diversity (discussed in Section 3.2.2). Starting

from an initial population G0, the evolution iteratively generates offspring shapes

for generation Gi from its previous generation Gi−1, where all the generated shapes

preserve the user-selected functionality labels specified by set Luser. The evolution

stops when a preset maximum number of iterations imax is reached. During the

production of Gi, we try all the possible pairs of shapes, SA and SB (SA 6= SB),

from Gi−1 as parent shapes to generate offspring shapes. If all the user-selected

functionality labels are preserved in the parent shapes, the crossover degenerates to

the exchange of part groups. If missing functionality labels are detected, we insert a

part group that possesses the missing functionality into the parent shape. We apply

a diversity selection to ensure that the generated shapes are geometrically diverse.

As soon as one generation is produced, we allow the user to select preferred offspring

shapes as parent shapes for the next generation. After the evolution is finished, a set

Gevolved is presented to the user that contains shapes from all the evolved generations.

The flow of our shape evolution is described in Algorithm 1. More details about the

evolutionary operations and the constraints used in the evolution are discussed below.

3.2.1 Evolutionary Operations

A crossover is defined between two part groups gA and gB, anchored on shapes SA

and SB, respectively. The crossover results in two possible offspring shapes. In one

offspring, gA is replaced by gB on shape SA. In the other, gB is replaced by gA on

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 23

Algorithm 1: Shape evolution
Input: G0, Luser, imax

Output: Gevolved
1 function ShapeEvolution(G0,Luser,imax)

2 Gevolved ← ∅
3 i← 1

4 while i ≤ imax do

5 Gi ← ∅
6 foreach SA ∈ Gi−1 do

7 LA ← functionality labels in SA
8 Lmissing ← Luser \ LA
9 foreach SB ∈ Gi−1 do

10 if SA 6= SB then

11 if Lmissing = ∅ then
12 foreach gA ∈ all part groups of SA do

13 foreach gB ∈ all part groups of SB do

14 if gA is unlabeled or has no functionality label in

Luser then
15 Soffspring ← exchange gA on SA for gB
16 Gi ← Gi ∪ {Soffspring}

17 if Lmissing 6= ∅ then
18 foreach g ∈ all part groups of SB do

19 if g has a functionality label in Lmissing then

20 Soffspring ← insert g into SA
21 Gi ← Gi ∪ {Soffspring}

22 Gi ← DiversitySelection(Gi)
23 Gi ← UserSelection(Gi)
24 Gevolved ← Gevolved ∪ Gi
25 i← i+ 1

26 return Gevolved

shape SB. We also allow in some cases gA (or gB) to be the null set, so that one of the

offspring shapes would be SB with gB deleted and the other is the result of inserting

gB into SA. We call these two different types of crossover part group exchange and part

group insertion. Deformation of part groups may be necessitated after a crossover

to fulfill geometric constraints. Note that we do not define a part group removal

operation since we start the evolution with relatively simple shapes that we evolve

into more complex ones, so that removal of functionality is not needed. Figure 3.5

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 24

Initial alignment Refined alignment Initial alignment Refined alignment

gA

gAgB

gB

Figure 3.5: Two examples of part group exchange. After a crossover that re-
places the part group gB by gA, we perform an initial placement of gA based
on bounding box alignment. This is followed by a refinement deformation that
aligns contact points (blue and orange circles). The refinement may be reverted
back if some of the contact points are not brought into proximity (right column
example).

illustrates examples of part group exchange, while Figure 3.7 illustrates part group

insertion.

Part Group Exchange

After exchanging the part groups of two shapes, we position the parts according to a

set of heuristics. Suppose without loss of generality that we are replacing gB with gA

in shape SB. We first perform an initial alignment of gA, so that we can use spatial

proximity to establish a correspondence between the contact points of gA and contact

points that previously connected to parts in gB. Then, we refine the placement of gA

so that corresponding contact points are brought into contact with each other.

For the initial alignment, we describe gA and gB with axis-aligned bounding boxes.

We translate gA so that the center of its box aligns with the center of gB. Next, we

scale the longest axis of gA to align it with the corresponding axis of gB, and scale

the other axes proportionally to maintain the aspect ratio of gA’s bounding box.

For the refined alignment, we match each contact point in gA to the closest contact

point in SB, after the initial alignment. If gA and gB have different numbers of contact

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 25

(a) (b) (c)

Figure 3.6: Restoring the scale of parts after a crossover. When performing the
crossover between the entire basket and the yellow part group of the cart shown
in (a), the basket is placed and deformed as shown in (b). Since the part
placement significantly deforms the parts, which possess functionality labels,
we restore their proportions.

points nA and nB, respectively, we define the match only for the n = min(nA, nB)

closest contact points. Then, we derive the transformation that best aligns the match-

ing contact points. In the following operations, only points that were matched are

considered. First we derive a translation that aligns the centroid of the contact points

in gA to the centroid of the corresponding contact points in shape SB. Next, we scale

gA by the average of the scalings needed to align each contact point in gA to its

matching contact point in SB. This provides a transformation that best aligns the

part groups in a least-squares sense, according to a term which is the sum of squared

errors that penalize discrepancies of position between each pair of contact points,

similarly to the optimization proposed for part placement by Kalogerakis et al. [29].

Note that, since the input shapes are roughly pre-aligned, the transformation does

not include a rotation, so that the evolved shapes have the same alignment as the

input ones. This assumption of pre-alignment may cause the evolved shapes to have

less variations, but simplifies the functionality analysis, as the functionality models

that we use require the input shapes to be consistently oriented [23].

The two steps used in part placement are illustrated in the bottom row of Fig-

ure 3.5. If the refined alignment is suboptimal, meaning that the distance of any of

the contact points to its closest contact point in the other part group is too large,

according to a threshold, then we revert back to the initial alignment. This provides

a more meaningful part placement as shown in the right column of Figure 3.5, since

in this example the refined alignment fails because some of the blue contact points are

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 26

(a) Source part group (b) Similar structure (c) Insertion result

Figure 3.7: Two examples of part group insertion. Given a part group in (a), we
find a region in the target shape in (b) with a structure similar to the context
of the part group in the source shape in (a). For example, the context consists
of four support structures (the legs) adjacent to the basket on the top row, or
one support structure (one leg) adjacent to each wheel on the bottom row. We
insert the part group in this region as shown in (c).

too far from the yellow ones. The proximity threshold is set as 5% of the bounding

box diagonal of the shape.

During the refined alignment, the proportions of parts can change, which could

leave some parts unrecognizable. Thus, we restore the proportions of parts that

possess functionality labels, if their scaling passes a threshold. Specifically, if the

scaling of the y-axis or z-axis of a part’s bounding box relative to the x-axis is greater

than an empirical factor of 3, we restore the scale of the affected axis. The effect of

this step is illustrated in Figure 3.6.

Part Group Insertion

For inserting a part group g into a shape SA, we look for a region in SA with a similar

structure to the context of g in its source shape and place g in this region. Specifically,

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 27

we record the relative position (translation vectors) of g to all of its adjacent parts

in its source shape that have functionality labels, where we denote the set of labels

of the adjacent parts as Ladjacent. Next, we locate a region in SA which has a similar

relative position to the same set of labels Ladjacent. This is formally defined as the

location in SA with the average of translation vectors that is the closest to the average

recorded in the source shape. Only the labels in Ladjacent that exist in shape SA are

considered in the average. We choose this location as the position to insert g. Two

examples of part group insertion are shown in Figure 3.7. Note that, if the location

in SA is already occupied by a part group gA, then we perform a standard crossover

to exchange gA for g. Since insertion operations are unconstrained and could be

applied add infinitum, they are mainly used to add missing functionalities (discussed

in Section 3.2.2).

3.2.2 Constraints in Evolution

The evolution consists in applying part group exchange operations to generate candi-

date offspring shapes, and then performing additional part group insertion operations

to guarantee the presence of certain functionalities. In order to make the generated

offspring shapes less random and more reasonable, a few constraints are employed

that can guide the process of evolution, including constraints specified by the user

and the selection of diversity.

User Constraints

The user can control the evolution with two guiding mechanisms: (i) setting con-

straints on the functionality part labels and (ii) selecting preferred offspring shapes

for further evolution. Specifically, the user selects a set of part functionalities that

should appear in the offspring shapes, and the evolutionary process ensures that the

shapes generated by crossovers possess all of the specified labels. After one generation

of shapes has been evolved, the user can select preferred shapes from the population,

which are then used as input for evolving another generation.

For satisfying the user constraints, we verify if all the shapes possess parts with

the functionality labels listed in the constraints. If a shape SA does not possess

all the labels, we insert the missing labels through additional crossover operations.

Specifically, for each missing functionality in SA, we randomly select a part group g

that possesses the missing functionality, from the pool of all part groups derived from

CHAPTER 3. EVOLUTIONARY SHAPE MODELING 28

the parent shapes. Next, we add the part group to SA with one of two operations:

(i) exchanging g with a part group gA in SA which is unlabeled or has a label that is not

in the set of constraints; (ii) inserting g into SA with part group insertion. We remark

that insertion operations are mainly used to add missing functionality to offspring

shapes, as otherwise they could be applied ad infinitum in an unconstrained setting.

If the necessary part group insertions cannot be performed, then the candidate shape

is discarded.

Diversity Selection

Given that several of the offspring shapes can be geometrically similar if they were

created from similar part groups, for each generation of evolution, we only keep

the offspring shapes that are diverse in terms of their geometry. Specifically, we

compute the geometric similarity between all pairs of shapes according to the light

field descriptor (LFD) [9], which gives an indication of the global similarity of shapes

based on light fields. The light field of a 3D object describes the radiometric properties

of light around the object and is represented by a 4D function interpreted from a set

of 2D images [33]. The LFD captures shape features from the light field rendered from

cameras positioned on the 20 vertices of a regular dodecahedron around a shape. Once

the LFDs are computed for all offspring shapes, we perform farthest point sampling

according to the LFD distances between the shapes, to keep only the top 50% most

distinct shapes. Finally, these shapes are presented to the user according to the

ranking of their functional plausibility, as described in Chapter 4.

Chapter 4

Functionality Analysis

In this chapter, we describe the method for analyzing the functionalities of hybrid

shapes, including the category functionality models that calculate the functionality

scores for each functional category (i.e., the category scores). We also describe the

shape validity verification that defines the geometrical and physical validity of shapes,

the partial matching algorithms that find the best functional-matching partial shapes

from the hybrid shapes, and lastly, the functionality scoring schemes that evaluate

the functional plausibility and multi-functionality of hybrid shapes.

4.1 Functional Plausibility Modeling

Our functional plausibility analysis is based on the functionality modeling method of

Hu et al. [23], which comprises functionality models of 15 functional categories. Each

model computes a category score for an input shape represented by point cloud, which

describes how well a shape satisfies the functionality of the category. To make scores

derived from different category functionality models comparable with each other, we

apply a score normalization based on the training data to the category scores.

4.1.1 Category Functionality Model

As illustrated in Figure 4.1, the category functionality model consists of a set of

proto-patches, where a proto-patch aggregates example patches of the same type.

The model also stores the geometric properties of proto-patches, including unary

properties associated with each proto-patch and binary properties associated with

each pair of proto-patches, and a set of weights that indicate the relevance of each

29

CHAPTER 4. FUNCTIONALITY ANALYSIS 30

(a) (b)

Linearity:

Normal:

RelPos:

…

Unary:

Binary:

Object 1

1
2

...

...

...

...

...

Object 2 Object 3

1
&

 2
Pr

ot
o-

pa
tc

h

pr
op

er
tie

s

pr
op

er
tie

s

pr
op

er
tie

s

pr
op

er
tie

s

pr
op

er
tie

s

pr
op

er
tie

s

PRST:

…
Height: Pr

ot
o-

pa
tc

h

0.12

0.09

0.01

0.18

0.08

Figure 4.1: The category functionality model can be defined as: (a) a set of proto-
patches with their unary and binary properties, and (b) a set of weights that
indicate the relevance of each property in describing the functionality. The
image is courtesy of Hu et al. [23].

property in describing the functionality. The properties are common geometric de-

scriptors such as overall shape and normal distribution. An overview of the use of

the category functionality model is illustrated in Figure 4.2. A brief description of

the model is given below based on the original paper of Hu et al. [23].

Model Definition

Formally, a proto-patch Pi is defined as Pi = {Ui, Si}, where Ui are the distributions

of unary properties associated to the proto-patch, and Si is the functional space

that surrounds the proto-patch. A category functionality model is denoted asM =

{P,B,Ω}, where P denotes the set of proto-patches, i.e., P = {Pi}, B denotes the

distributions of binary properties between pairs of proto-patches, i.e., B = {Bi,j},

and Ω denotes the set of weights that indicate the relevance of the unary and binary

properties in describing the functionality.

Furthermore, for the ith proto-patch, Ui is a set that consists of different unary

properties, such as normal, height, and linearity, i.e., Ui = {ui,k}, where ui,k encodes

the distribution of the kth unary property of the ith proto-patch. Bi,j comprises differ-

ent binary properties, such as the relative orientation and relative position between

CHAPTER 4. FUNCTIONALITY ANALYSIS 31

(a) (b)

Proto-patch

Unary
properties

1

Proto-patch

Unary
properties

2
Proto-patch

Unary
properties

3

Binary
properties

Input shape and prediction

Score = 0.96

Functionality model

Score = 0.92 Score = 0.84 Score = 0.72Bi
na

ry

pr
op

er
tie

s Binary

properties

Figure 4.2: Overview of the use of the category functionality model. (a) A category
functionality model describes functionality in the form of proto-patches that
summarize the functional patches into collections of their properties. (b) Given
an unknown shape as input, the model computes a category score that measures
how well the shape supports the functionality of the category. The image is
courtesy of Hu et al. [23].

two patches, denoted as Bi,j = {bi,j,k}, where bi,j,k encodes the distribution of the kth

binary property between the ith and jth proto-patches.

Model Learning

The category functionality models are learned with a set of training shapes in scene

contexts described by their ICON descriptors [25]. An ICON descriptor, as illustrated

in Figure 4.3, organizes the interactions of the target object into a tree structure. The

correspondence between all the pairs of ICON hierarchies can be computed through

subtree isomorphism so as to cluster shapes with similar interactions into functional

categories. Then, for shapes from the same category, the functional patches are

collected from the first level nodes of their ICON hierarchies. The functional patches

are then summarized into proto-patches by extracting their distributions of unary and

binary properties that are represented as histograms of point-level property values,

and functional spaces that are represented as closed surfaces.

Category Scoring

With the category functionality models, we can make functionality predictions for

unknown shapes. Given a model and an input shape, we use the distributions of

CHAPTER 4. FUNCTIONALITY ANALYSIS 32

Figure 4.3: The ICON descriptor (right) that describes the interactions of the table
in orange in the scene (left). Using the ICON descriptor, the interactions of the
table are organized into a tree structure, where the leaf nodes (blue and green
nodes) represent the interacting objects and the internal nodes (gray nodes)
group the leaf nodes with similar interactions. The image is courtesy of Hu et
al. [25].

unary and binary properties of the proto-patches to locate corresponding patches on

the unknown shape. Then, based on the proto-patches, we define the functionality

distance d that measures how far the shape is from satisfying the functionality defined

by the model. The distance d is a value between 0 and 1. Thus, we define the category

score of a shape as s = 1− d.

Specifically, each input shape is represented as a set of n surface sample points.

To capture the patch πi on the unknown shape that corresponds to the proto-patch

Pi of the model M, we compute the spatial extent of πi, which is encoded as a n-

dimensional weight field Wi, that describes how well the property values of πi agree

with the distributions of Pi. Each entry 0 ≤ Wi,j ≤ 1 of Wi denotes how strong point

j belongs to πi. Thus, the spacial extents of multiple patches can be represented as

an n×m matrix W , where m is the number of proto-patches inM.

Therefore, the functionality distance can be simply formulated as:

d(W,M) = du(W,M) + db(W,M), (4.1)

where du and db are the unary and binary distances that consider respectively the

distributions of unary and binary properties of M. The computation of du and db

are explained in detail below.

Considering a specific unary feature uk, the distance from the patch πi defined

by Wi on the unknown shape to the proto-patch Pi is measured by comparing their

CHAPTER 4. FUNCTIONALITY ANALYSIS 33

patch-level properties:

duk
(Wi, ui,k) = ‖Duk

(Wi)−N (ui,k)‖
2

F
, (4.2)

where ‖ · ‖F is the Frobenius norm of a vector, Duk
(Wi) is the patch-level feature

descriptor of πi for the unary feature uk, which comprises a set of histograms that

describe the point-level properties of all points in the patch πi for uk, and N (ui,k) is

the nearest neighbor of Duk
(Wi) in distribution ui,k ∈ Ui.

Assuming that the properties are independent of one another, the functionality

distance from πi to Pi is simply formulated as the sum of all property distances:

du(Wi, Pi) =
∑

uk

αu
kduk

(Wi, ui,k)

=
∑

uk

αu
k ‖Duk

(Wi)−N (ui,k)‖
2

F
,

(4.3)

where αu
k is the weight for property uk in Ω.

Thus, given an initial assumption for Wi and its nearest neighbors, the location

of πi and its spatial extent Wi can be refined iteratively through performing gradient

descent of the distance function defined by (4.3).

With all the refined patches located, the distance that considers the unary prop-

erties of all the proto-patches is formulated as:

du(W,M) =
∑

i

∑

ui,k

αu
kduk

(Wi, ui,k)

=
∑

i

∑

ui,k

αu
k ‖Duk

(Wi)−N (ui,k)‖
2

F
.

(4.4)

Similar to the computation of unary distance, the binary distance is written as:

db(W,M) =
∑

i,j

∑

bi,j,k

αb
kdbk(Wi,Wj, ui,k)

=
∑

i,j

∑

bi,j,k

αb
k ‖Dbk(Wi,Wj)−N (bi,j,k)‖

2

F
,

(4.5)

where αb
k is the weight for property bk in Ω, Dbk(Wi,Wj) is a set of histograms that

describe the pairwise properties between πi and πj, and N (bi,j,k) is the nearest neigh-

bor of Dbk(Wi,Wj) in distribution bi,j,k ∈ Bi,j. More details about the computation

CHAPTER 4. FUNCTIONALITY ANALYSIS 34

0.95

Shelf: 0.943 0.854 Chair: 0.947 0.786

0.7 0.75 0.8 0.85 0.9 0.95 1 0.7 0.75 0.8 0.85 0.9 1

p1 p1

p2 p2

Figure 4.4: Normalization of category scores for the shape on the left. The two
numbers on the top of each graph are the scores of the shape for the shelf and
chair categories before and after normalization. The score distributions for
training shapes inside/outside the corresponding category are drawn in green
and red, respectively. The probabilities p1 and p2 represent the percentages of
shapes having lower scores in the corresponding distributions. We see that, even
though the original scores for the two categories are quite close, the normalized
score for the chair category becomes much smaller than that of the shelf cate-
gory, since shapes inside the chair category have relatively high scores.

of the unary and binary distances as well as the feature descriptors can be found in

Appendix A.

4.1.2 Score Normalization

The category scores computed with the models of Hu et al. [23] are based on the

similarity between the input shape being evaluated and training shapes in the func-

tional category of the model. Since the functionality models are trained separately

per category, scores for different categories are not directly comparable. To address

this limitation and obtain scores that are comparable across categories, we normalize

the scores for each category according to the training data.

Given a category functionality model, we compute the scores for all the shapes

in the training data. Next, we compute the cumulative distribution of the scores

of shapes inside the category, and also of the scores of shapes outside the category,

obtaining cumulative distributions D1 and D2, respectively. Given an unknown query

shape, we compute its score with the category functionality model, and compute its

normalized score as w1× p1+w2× p2, where p1 is the probability of the shape’s score

according to D1, and p2 according to D2. The probability p1 is an approximation of

the percentage of shapes inside the category that have scores lower than the query,

and represents the probability of the query being inside the category. Similarly, p2

CHAPTER 4. FUNCTIONALITY ANALYSIS 35

represents the probability of the shape not being outside the category. Thus, the

query is more likely to belong to the category when both p1 and p2 are large, which

can be captured by a weighted sum of these two probabilities. The weights w1 and

w2 are defined as the percentages of shapes inside and outside the category over all

the shapes in the training data. They indicate the reliability of the two distributions,

respectively. Figure 4.4 shows one example to illustrate how the scores are normalized

and more meaningful than the original scores.

4.2 Shape Validity Verification

A shape should be geometrically and physically valid in addition to being functionally

plausible. We perform the validity verification according to the following criteria.

4.2.1 Part-Wise Connectivity

In order to ensure that all parts are connected in the valid shapes, we include the

verification of part-wise connectivity into the validity evaluation. Since we use a

relation graph to represent each shape, as described in Section 3.1.2, the part-wise

connectivity can be reduced to the graph connectivity, for which we only need to

check if the graph has isolated subgraphs or not. For example, in Figure 3.2, the

relation graph on the left represents a shape with all parts connected, while the one

on the right represents a disconnected shape.

4.2.2 Physical Stability

The mass arrangement of a valid shape should be balanced so that the shape does

not fall due to gravity. Similar to the idea of static stability of shapes introduced by

Fu et al. [14], we verify a shape’s stability in an approximate manner.

We first calculate the center of mass of the shape by averaging the center points

of the bounding box diagonals of all parts of the shape and calculate the convex

polygon formed by all ground touching points of the shape. A threshold of 1% is

set to decide the ground touching points, i.e., we find the minimum z-coordinate zmin

among all points in the shape and mark all points that have z-coordinate smaller than

zmin + 1% as ground touching points. We then check whether the projection of the

center of mass on the ground falls inside the convex boundary formed by the ground

CHAPTER 4. FUNCTIONALITY ANALYSIS 36

sitting storage rolling

Figure 4.5: Shapes not having functional space due to obstruction of parts.

touching points. The shape is considered as physically stable if the projection is inside

the convex boundary. Note that this physical stability check assumes that parts are

static and have constant density. Thus, it is not able to approximate stability for

shapes with movable parts or composed of various physical materials.

4.2.3 Functional Space

The shape should have enough functional space to support the functionality of a

functional category. For example, the seat of a chair, which provides the sitting

functionality for the whole shape, should not be blocked by other parts of the chair.

Some examples of shapes not having enough functional space are shown in Figure 4.5.

We use the functional space extracted from the models of Hu et al. [23] to verify if a

shape has adequate space to perform a functionality.

4.3 Functionality Partial Matching

Given that the parent shapes of an offspring may not be of the same functional cate-

gory, the evolutionary modeling can generate cross-category hybrid shapes that do not

fit well a single functional category and cannot be modeled by category functionality

models. Moreover, one of the goals of the evolutionary modeling is to generate shapes

with surprising functionality, possibly mixing the functionality of different functional

categories. Thus, we need to take multiple categories into account when evaluating a

hybrid shape.

We stipulate that a cross-category shape is functionally plausible as long as it

partially supports the functionality of one or multiple functional categories. Thus, we

CHAPTER 4. FUNCTIONALITY ANALYSIS 37

Algorithm 2: Combinatorial search
Input: S, F
Output: scores

1 function CombinatorialSearch(S,F)
2 category_scores← compute category scores of S
3 foreach f ∈ F do scores[f]← Normalize(category_scores[f])

4 foreach g ∈ power set of all parts do

5 if g is part-wise connected and physically stable then

6 category_scores← compute category scores of g

7 foreach f ∈ F do

8 if scores[f] < Normalize(category_scores[f]) then

9 scores[f]← Normalize(category_scores[f])

10 foreach f ∈ F do

11 if S does not have functional space for f then

12 scores[f]← 0

13 return scores

arrive at the notion of functionality partial matching, where we derive the functionality

score of a hybrid shape by aggregating the scores of partial matches of parts of

the shape to different functional categories. Specifically, we combine the category

functionality models with partial shape searching algorithms to extract the functional

partial shapes from hybrid shapes that best match the functional categories, so that

the category scores of the best-matching partial shapes can be used to reveal the

functional plausibility of the entire shape. Technically speaking, a combinatorial

search, which traverses through all partial shapes from a hybrid shape, can give

the optimal analysis result. However, due to its high computational complexity, we

propose other search heuristics as low-cost alternatives, namely, forward beam search,

reverse beam search, and a simplified search.

4.3.1 Combinatorial Search

The combinatorial search, as the term suggests, takes all partial shapes of a shape into

consideration. Specifically, for a shape S with n parts, the combinatorial search first

computes all the category scores for the entire shape S. Then, it traverses through all

its partial shapes represented by the 2n − 2 part groups, and computes the category

scores for the partial shapes which are part-wise connected and physically stable.

CHAPTER 4. FUNCTIONALITY ANALYSIS 38

During the combinatorial search, the category scores are calculated for all functional

categories F provided by the category functionality models. If the shape S does not

have adequate functional space to support the functionality of category f in F , the

score for f is set to 0.

The combinatorial search takes two input arguments, namely, the shape S and all

functional categories F , written as CombinatorialSearch(S,F), and returns a list

scores as the functionality partial matching scores that stores a category score for

each functional category. The pseudo-code of the combinatorial search is shown in

Algorithm 2, The set of all part groups can be seen as the power set of the set of all

parts. In order to efficiently derive all part groups from shape S, we first calculate

the total number of subsets, which is 2n, and then iterate from number 1 to number

2n − 1. During each iteration, we analyze the current number in binary form from

the 1st to the nth digit. If the value of the kth digit (k ∈ {1, 2, . . . , n}) is 1, then the

part with index k will be included in the part group. Otherwise, if the kth digit is 0,

the part with index k will be excluded from the part group.

According to the algorithm described above, the computational complexity of the

combinatorial search is O(2n) for both time and space.

4.3.2 Beam Search

The combinatorial search, which traverses through all possible part sets of a shape,

is a naive algorithm for partial shape search and can be computationally expensive

when the shapes are composed of a large number of parts. Therefore, based on the

beam search algorithm, we propose partial matching methods that can be seen as

efficient alternatives to the combinatorial search.

Beam search is a heuristic graph search algorithm and was first used in the HARPY

speech recognition system by Bruce Lowerre [36]. It is usually applied in the case

where the solution space of the graph is relatively large. In order to reduce the space

and time complexity of the search, beam search uses a heuristic function to select the

nodes to be expanded at each level of its search tree. In our work, we use a heuristic

function that cuts off the nodes with low scores at each step of tree expansion and

preserves the most promising high score nodes. The set of high score nodes at each

depth level of the search tree is called the beam.

The search tree of beam search is built in a breadth-first search manner. It starts

the search at the root node, explores all of the successor nodes of the current node at

CHAPTER 4. FUNCTIONALITY ANALYSIS 39

the present depth prior to moving on to the nodes at the next depth level, and sorts

the successor nodes in increasing order of heuristic score. Unlike a common breadth-

first search, the search tree of beam search stores only a predetermined number of

best successor nodes with highest heuristic scores at each depth level, and expands

only to the next level from the best successor nodes.

As shown in Algorithm 3, within the context of functionality partial matching, we

define the beam search process as a function taking four input arguments, written as

BeamSearch(S,F,w,start), where S is the entire shape, F refers to all functional

categories, w refers to the beam width, which is an integer value denoting the pre-

determined number of best successor nodes at each expansion of depth level of the

search tree, and start is the list of initial partial shapes represented by part groups

where the beam search starts, defining the state of the root node. Finally, the beam

search returns the list scores as the functionality partial matching scores.

The functionality models of Hu et al. [23] provide 3D functionality analysis for

15 different kinds of functional categories. However, considering that a hybrid shape

is the offspring of two parent shapes, it is not necessary to perform beam search to

find the partial shapes that fit each functional category separately. Given a shape S,

we only compute the category scores for the following functional categories: (i) the

set Fparents of functional categories of the parent shapes of S and (ii) categories that

have a category score for the entire shape not exceeding a threshold θ = 0.9, as

we find through experiments that shapes with a category score higher than 0.9 al-

ready support well the functionality of the concerned functional category. To avoid

repeating computation, during beam search, we use a hash table visited that maps

the binary number hash denoting each part group to its category scores. If a com-

puted part group is visited again in further beam search, we only need to look up the

corresponding scores from the visited table.

During each beam search for the best partial shape matching functional category

f , we use three node lists to manage the search process, namely, the beam list, the

closed list, and the open list. The beam list stores the part groups at each level

of the search tree with highest category scores for f , i.e., the nodes to be expanded

to the next depth level of the search tree, closed stores the part groups that have

been visited, and open stores the part groups of the current level of the search tree in

decreasing order of scores. Partial shapes with disconnected parts that arise during

the search are not consider further in the search. Shapes that are physically unstable

CHAPTER 4. FUNCTIONALITY ANALYSIS 40

Algorithm 3: Beam search
Input: S, F , w, start
Output: scores

1 function BeamSearch(S,F,w,start)
2 category_scores← compute category scores of S
3 foreach f ∈ F do scores[f]← Normalize(category_scores[f])

4 foreach f ∈ Fparents do

5 if scores[f] ≥ 0.9 then continue

6 beam← start

7 closed← start

8 while beam 6= ∅ do
9 open← ∅

10 foreach g ∈ beam do

11 foreach p ∈ all parts of shape S do

12 successor← remove p from g

13 if successor ∈ closed then continue

14 if visited.HasKey(successor.hash) then

15 category_scores← visited[successor.hash]

16 else

17 if successor is not part-wise connected then continue

18 category_scores← compute category scores of successor

19 if successor is not physically stable then

20 foreach f ∈ F do

21 category_scores[f]← category_scores[f]− 0.1

22 successor.category_scores← category_scores

23 visited[successor.hash]← category_scores

24 open← open ∪ {successor}
25 closed← closed ∪ {successor}
26 if scores[f] < Normalize(category_scores[f]) then

27 scores[f]← Normalize(category_scores[f])

28 if scores[f] ≥ 0.9 then goto 4

29 beam← ∅
30 while open 6= ∅ and |beam| < w do

31 g ← part group in open with highest score of f

32 beam← beam ∪ {g}
33 open← open \ {g}

34 foreach f ∈ F do

35 if S does not have functional space for f then

36 scores[f]← 0

37 return scores

CHAPTER 4. FUNCTIONALITY ANALYSIS 41

are still considered in the search, as such instability can be temporary. However, for

each partial shape that is not physically stable, we reduce its score to ensure that the

stable shapes appear at the front of the open list.

Before the beam search starts, the category scores of all functional categories F

are calculated for the entire shape S. The beam search can then be conducted in two

different directions: the reverse direction and the forward direction. A reverse beam

search starts from the part group that represents the entire shape and expands the

search tree to the next depth level by removing one part from the current part group.

A forward beam search, on the contrary, starts from a list of initial part groups, and

adds one part to each successor part group during the expansion of the search tree.

We use the same threshold score θ = 0.9 defined before to determine the termination

of the beam search, i.e., as soon as a partial shape with normalized score of the current

functional category f higher than θ is found, the beam search for the current category

is stopped and the search proceeds to the next functional category in Fparents. If no

partial shape that has a score higher than θ can be found during the beam search, the

beam search proceeds until it cannot be further expanded. The functional categories

that do not have enough functional space in S are detected, and their scores are set

to 0. We show the pseudo-code of a reverse beam search in Algorithm 3, where the

start list comprises the entire shape. For a forward beam search, we only need to

change line 12 in Algorithm 3 to add a part p to part group g.

The time and space consumption of the beam search algorithm is dependent on

the heuristic function and the beam width, where an inaccurate heuristic function

may lead the expansion of the search tree to undesired nodes. In the worst case, a

beam search can be led all the way to the deepest level of the search tree, which

results in a computational complexity of O(wδmax) for the number of tree expansions,

with δmax being the maximum depth of the search tree. Considering that the beam

search for a shape with n parts can expand to at most n nodes at each step of tree

expansion, the upper bound of the computational complexity for the number of nodes

is O(wnδmax) for both time and space.

4.3.3 Simplified Search

To further mitigate the computational complexity of partial matching, we introduce

a less costly algorithm for partial matching that only takes constant time and space,

which we call simplified search. As shown in Algorithm 4, given a shape S, the

CHAPTER 4. FUNCTIONALITY ANALYSIS 42

Algorithm 4: Simplified search
Input: S, F
Output: scores

1 function SimplifiedSearch(S,F)
2 category_scores← compute category scores of S
3 foreach f ∈ F do

4 scores[f]← Normalize(category_scores[f])

5 foreach g ∈ part sets of S from parent shapes do

6 if g is part-wise connected and physically stable then

7 category_scores← compute category scores of g

8 foreach f ∈ F do

9 if scores[f] < Normalize(category_scores[f]) then

10 scores[f]← Normalize(category_scores[f])

11 foreach f ∈ F do

12 if S does not have functional space for f then

13 scores[f]← 0

14 return scores

simplified search takes 3 sets of parts into consideration: the entire shape and each

part group coming from one of its parent shapes. We compute category scores of all

functional categories F for the shapes represented by the 3 sets of parts. Similarly as

for the beam search, the scores of shapes that do not have enough functional space

in S are set to 0.

4.4 Functionality Scoring

The category scores only reflect the functional plausibility of hybrid shapes for each

functional category separately. To comprehensively evaluate the functionalities of hy-

brid shapes, we perform functionality scoring by aggregating the per-category scores

in two manners: considering functional plausibility and multi-functionality.

4.4.1 Functional Plausibility Score

Given the best category scores of a shape computed for each of the relevant func-

tional categories through partial matching and normalized as described above, we

CHAPTER 4. FUNCTIONALITY ANALYSIS 43

integrate the scores into a single number that indicates the shape’s cross-category

functional plausibility by simply taking the maximum of the scores. Although dif-

ferent manners of integrating the scores are possible, the maximum score indicates

the best partial functionality that the shape possesses, and thus sets a lower bound

for the functionality of the shape. An alternative approach such as the sum of scores

would be biased by the categories that possess low scores because the shape does

not support their functionality. However, such low-score categories do not necessarily

indicate that the shape is not functional. One limitation of the maximum is that it

does not indicate whether a shape has multiple functionalities. To take into account

such multi-functional shapes, the score described next can be used as an alternative

to the plausibility score.

4.4.2 Multi-Functionality Score

The multi-functionality score is intended to capture the number of functionalities that

a shape can possess. We define the score as the number of different functional cate-

gories that are partially supported by the shape. Specifically, we count the number

of functional categories for which the shape has a high score, determined by whether

the maximum of the functionality partial matching score for the category is above a

threshold θ. We use the threshold value θ = 0.9 (the same threshold that is used for

terminating the beam search in Section 4.3.2).

Chapter 5

Experimental Evaluation

In this chapter, we discuss the results of experiments comparing different functionality

partial matching algorithms for the analysis of functionality of hybrid shapes. We first

compare the results of partial matching, using the combinatorial search as a baseline,

to that of full matching, to justify the necessity of partial matching in functionality

analysis for hybrid shapes. Next, we compare the three low-cost partial matching

algorithms, i.e., reverse beam search, forward beam search, and simplified search,

and analyze the results of these methods with different sets of parameters. Lastly, we

present a comparative summary of the functionality scores and execution time of the

three low-cost partial matching algorithms.

To compare the different partial matching algorithms, we perform controlled ex-

periments where we evaluate the functionality of a set of hybrid shapes using the

partial matching algorithms. These hybrid shapes were obtained by evolving an ini-

tial set of 4 parent shapes belonging to 4 functional categories, namely, chair, desk,

cart, and shelf, which are included in the functionality models of Hu et al. [23], using

the evolution method described in Chapter 3. From all the evolved offspring shapes, 5

are selected for the experiments. All the execution times presented in this and the fol-

lowing chapters are measured on a workstation with an Intel Core i7-6700 3.40GHz

quad-core processor. Our implementation is based on C# and MATLAB, and is

largely unoptimized; we believe that it can be sped up significantly with refactoring.

5.1 Partial Matching vs. Full Matching

Table 5.1 presents the functionality analysis results provided by a full matching

scheme, i.e., computing category scores for the entire hybrid shapes, and a partial

44

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Table 5.1: Comparison between full matching and partial matching.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1
schair = 0.44

sdesk = 0.00
schair = 0.96 sdesk = 0.98 37

2
schair = 0.73

sshelf = 0.69
schair = 0.96 sshelf = 0.94 150

3
schair = 0.90

scart = 0.57
schair = 0.93 scart = 0.98 136

4
sdesk = 0.63

sshelf = 0.38
sdesk = 0.98 sshelf = 0.96 134

5
scart = 0.68

sshelf = 0.53
scart = 0.96 sshelf = 0.97 376

matching scheme, i.e., computing category scores for all partial shapes derived by a

combinatorial search. In the first column of the table, i.e., “Shape”, we show the

hybrid test shape and the category scores computed for the entire shape. In columns

“Partial shape 1” and “Partial shape 2”, we show the visualized best partial shapes

that fit the functional categories of the parent shapes as well as their correspond-

ing category scores. In column “Number of evaluated shapes”, we present the total

number of shapes evaluated during the combinatorial search.

From Table 5.1 we can conclude that, compared to full matching, partial matching

can explicitly find the best-matching partial shapes of the hybrid shapes to specific

functional categories and thereby provide more reasonable category scores. For ex-

ample, Shape 1, which is evolved from one parent shape from the chair category

and another from the desk category, possesses the functionalities from the functional

categories of both parents, as seen in the visualization of the shape. The function-

ality evaluation of the entire shape gives low category scores of schair = 0.44 and

sdesk = 0.00. However, the combinatorial search of Shape 1 successfully captures

the partial shapes that fit the categories chair (Partial shape 1) and desk (Partial

CHAPTER 5. EXPERIMENTAL EVALUATION 46

shape 2). The partial matching provides high category scores of schair = 0.96 and

sdesk = 0.98 that better describe the functionalities of the hybrid shape.

In a few cases, such as for hybrid shapes that have functional patches that support

a certain category, it is also possible that the category score computed for the entire

shape is high. For example, the category score of the chair category for Shape 3

reaches schair = 0.90 on the full shape.

In these experiments, on average, the combinatorial search of each shape traverses

through 166.6 partial shapes and takes 4674 s. Note that all time evaluations for

partial matching in this chapter include the time for generating partial shapes.

5.2 Partial Matching Evaluation

In this section, we perform a detailed comparative analysis between reverse beam

search, forward beam search, and simplified search. We evaluate the three partial

matching algorithms on the same experimental data, and test the beam search algo-

rithms with different parameter settings in order to find the best setting.

5.2.1 Reverse Beam Search

The reverse beam search has only one parameter, the beam width w, that can be

tuned. Different choices of beam width can result in search trees of different sizes (in-

curring higher or lower computational cost) and also result in different partial match-

ing results (closer or further away from the optimal solution provided by the com-

binatorial search). In this section, we experiment with three different beam widths,

namely, 1, 2, and 3. We present, for each test shape and beam width, the visualiza-

tions of the functional partial matches captured by the reverse beam search and their

corresponding category scores. We also present the total number of partial shapes

evaluated in each search. Note that we do not experiment with beam widths larger

than 3, since these would create trees that are too large to fit in memory for the

shapes used in our experiments, which are composed of 8.2 parts on average.

Beam Width Selection

The results of functionality analysis provided by the reverse beam search with beam

width of 1 are illustrated in Table 5.2. We find that a beam width of 1 is not sufficient

CHAPTER 5. EXPERIMENTAL EVALUATION 47

Table 5.2: Results of reverse beam search, with w = 1.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.88 17

2 schair = 0.96 sshelf = 0.93 23

3 schair = 0.90 scart = 0.98 7

4 sdesk = 0.88 sshelf = 0.97 27

5 scart = 0.92 sshelf = 0.96 10

for finding the optimal functional partial matches of some hybrid shapes. Because the

heuristic scores of the partial shapes at each level of the search tree are temporary,

the partial shape with highest score may not be expanded to the best partial match.

For example, the search fails to find the best partial shapes that match desk for

Shape 1 and Shape 4, which are illustrated as Partial shape 2 of Shape 1 and Partial

shape 1 of Shape 4. Their functionality partial matching score of the desk category

is sdesk = 0.88, which is below the threshold θ = 0.9.

Moreover, the reverse beam search often cannot find the best partial matches

found by the combinatorial search. For example, Partial shape 2 of Shape 2, a partial

shape matching the shelf category, gets a category score of sshelf = 0.93, which is

slightly lower than sshelf = 0.94 derived by the combinatorial search. Due to the

threshold θ = 0.9 that we set for terminating the search process, the expansion of

the search tree can stop before the best partial match is found. The same situation

also happens to Partial shape 1 of Shape 3, and Partial shape 1 and Partial shape 2

of Shape 5. However, by visually inspecting the aforementioned partial shapes, we

find that such inaccuracy is acceptable, as the form of these partial shapes can still

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Table 5.3: Results of reverse beam search, with w = 2.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.98 17

2 schair = 0.96 sshelf = 0.93 32

3 schair = 0.90 scart = 0.98 7

4 sdesk = 0.98 sshelf = 0.97 37

5 scart = 0.92 sshelf = 0.96 10

support the functionality of the matched categories.

The results of functionality analysis provided by the reverse beam search with

beam widths of 2 and 3 are illustrated respectively in Table 5.3 and Table 5.4. Com-

pared to the search with beam width of 1, widths of 2 and 3 can find more of the

optimal partial shapes. For example, as shown in Table 5.3, the best partial matches

to desk, which cannot be found by the reverse beam search with beam width of 1, are

found by the reverse beam search with beam width of 2 for Shape 1 (Partial shape 2)

and for Shape 4 (Partial shape 1), with category score of sdesk = 0.98.

On the other hand, a larger beam width can result in a larger computational cost.

For example, as shown in Table 5.4, the number of shapes evaluated for Shape 2 is 40,

which presents an increase of 25.0% from 32 in Table 5.3, and an increase of 73.9%

from 23 in Table 5.2. The same situation also happens to Shape 1 and Shape 2. The

average numbers of partial shapes evaluated by the reverse beam search with beam

width of 1, 2, and 3 are respectively 16.8, 20.6, and 24.2, and correspondingly, the

average execution times are 447 s, 534 s, and 626 s. The average execution time of

the reverse beam search increases respectively by 19.4% and 17.2%, when the beam

CHAPTER 5. EXPERIMENTAL EVALUATION 49

Table 5.4: Results of reverse beam search, with w = 3.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.98 19

2 schair = 0.96 sshelf = 0.93 40

3 schair = 0.90 scart = 0.98 7

4 sdesk = 0.98 sshelf = 0.97 45

5 scart = 0.92 sshelf = 0.96 10

width is increased from 1 to 2 and from 2 to 3.

Based on the results described above, we can conclude that, as far as our test

shapes are concerned, experimentally 2 is the best beam width for the reverse beam

search. The beam width of 2 not only allows the reverse beam search to find reason-

able partial matches, but also requires less execution time, which can be seen as a

trade-off between the analytical accuracy and the execution time of the method.

5.2.2 Forward Beam Search

The forward beam search has two parameters that can be tuned: the beam width

and the partial shapes from which the search starts. Similar to the reverse beam

search, we find through experiments that 2 is the best beam width for the forward

beam search, when evaluating our test shapes. Therefore, in this section, we only

discuss the optimization of the initial partial shapes when using a beam width of 2.

The initial partial shapes for the search can be defined by a parameter that selects

the number of parts nparts that the initial partial shapes should contain. The forward

CHAPTER 5. EXPERIMENTAL EVALUATION 50

Table 5.5: Results of forward beam search, with nparts = 1.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.98 18

2 schair = 0.96 sshelf = 0.94 45

3 schair = 0.90 scart = 0.96 42

4 sdesk = 0.98 sshelf = 0.45 42

5 scart = 0.92 sshelf = 0.95 51

beam search starts from the set of all partial shapes with nparts, i.e., the shapes derived

from all possible combinations of nparts. We experiment with three different values

for nparts: 1, 2, and 3. The largest nparts is set to 3 because the parent shapes in our

dataset are composed of at least 3 parts, so that nparts will not exceed the number of

parts in parent shapes. For the experimental results, we present for each test shape

the category scores of the functional partial matches captured by the forward beam

search and the total number of partial shapes evaluated in each search.

Initial Partial Shapes Selection

The functionality analysis results of forward beam search starting from the partial

shapes represented by 1-combinations, 2-combinations, and 3-combinations of parts

are respectively shown in Table 5.5, Table 5.6, and Table 5.7.

If a partial shape does not contain enough parts, its heuristic functionality score,

which is based on the functional patch detected in the shape, can be very low, as no

patch that supports any functionality can be found in such a partial shape. Therefore,

CHAPTER 5. EXPERIMENTAL EVALUATION 51

Table 5.6: Results of forward beam search, with nparts = 2.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.98 14

2 schair = 0.96 sshelf = 0.94 39

3 schair = 0.90 scart = 0.96 37

4 sdesk = 0.98 sshelf = 0.45 41

5 scart = 0.90 sshelf = 0.94 75

the ranking of these scores can be unreasonable, which can further result in unrea-

sonable partial shapes found by the search. For example, as shown in Table 5.5 and

Table 5.6, the forward beam search starting from 1-combinations and 2-combinations

cannot find a reasonable partial shape for shelf for Shape 4, of which the category

score is sshelf = 0.45. This issue can be addressed with the forward beam search start-

ing from initial partial shapes having more parts, for example, in the forward beam

search starting from 3-combinations, as shown in Table 5.7, a more reasonable partial

shape for shelf can be found for Shape 4 with a higher category score sshelf = 0.96,

as illustrated with Partial shape 2 of Shape 4.

On the other hand, since a threshold score θ = 0.9 is used to stop the expansion

of the search tree, for many hybrid shapes, the forward beam search cannot find the

best partial shapes found by the combinatorial search, for example, Partial shape 1

and Partial shape 2 of Shape 3, Partial shape 2 of Shape 4, and Partial shape 1 and

Partial shape 2 of Shape 5. Although such inaccuracy is acceptable, this phenomenon

is still much more common in the forward beam search as compared to the reverse

CHAPTER 5. EXPERIMENTAL EVALUATION 52

Table 5.7: Results of forward beam search, with nparts = 3.

Shape Partial shape 1 Partial shape 2
Number of

shapes evaluated

1 schair = 0.96 sdesk = 0.98 14

2 schair = 0.96 sshelf = 0.94 43

3 schair = 0.90 scart = 0.96 39

4 sdesk = 0.98 sshelf = 0.96 32

5 scart = 0.92 sshelf = 0.95 66

beam search.

There is no obvious correlation that can be found between the execution time

of the forward beam search and the number of parts of the initial partial shapes

in our experiments. The average number of shapes evaluated in the forward beam

search starting from 1-combinations, 2-combinations, and 3-combinations of parts

are respectively 39.6, 41.2, and 38.8, which correspond to execution times of 1123 s,

1440 s, and 1274 s.

The experimental results show that, the initial partial shapes of the forward beam

search should contain at least 3 parts to ensure that reasonable partial matches can

be found for each functional category.

5.2.3 Simplified Search

The simplified search provides a higher computing speed at the cost of lower analytical

accuracy. For each test shape, a simplified search evaluates 3 shapes: the entire shape

and each partial shape coming from the parents of the test shape. Table 5.8 presents

the functionality analysis results of the simplified search. In the table, we present

CHAPTER 5. EXPERIMENTAL EVALUATION 53

Table 5.8: Results of simplified search.

Shape Partial shape 1 Partial shape 2

1 schair = 0.08 sdesk = 0.98

2 schair = 0.96
Parts not

connected

3 schair = 0.00 scart = 0.86

4 sdesk = 0.98 sshelf = 0.31

5
Parts not

connected

Parts not

connected

the visualizations of the partial shapes captured by the simplified search and their

corresponding category scores.

For some of the hybrid shapes, the best partial shapes for the parent functional

categories can be found by a simplified search, such as Partial shape 2 of Shape 1 and

Partial shape 1 of Shape 2. However, most of the partial shapes from the parent shapes

possess issues that prevent good partial matches to their functional categories. For

example, in Table 5.8, Partial shape 1 of Shape 1 and Partial shape 2 of Shape 4 are

physically unstable, with category scores of schair = 0.08 and sshelf = 0.31, respectively,

and Partial shape 1 and Partial shape 2 of Shape 3 are incomplete, with category

scores of schair = 0.00 and scart = 0.86, respectively.

Another important issue shown in the results of the simplified search is that the

captured partial shapes may not be part-wise connected, which prevents the category

scores from being computed for these partial shapes, such as Partial shape 2 of Shape 2

and Partial shape 1 and Partial shape 2 of Shape 5.

Note that, for a test shape, the category scores computed for the partial shapes do

not necessarily represent its final functional plausibility score, as the simplified search

CHAPTER 5. EXPERIMENTAL EVALUATION 54

Table 5.9: Analysis of partial matching schemes.

Shape

Reverse

beam search

Forward

beam search

Simplified

search

sp sm t sp sm t sp sm t

1 0.98 2 420 0.98 2 457 0.98 1 56

2 0.96 2 796 0.96 2 1407 0.96 1 54

3 0.98 2 221 0.96 2 1586 0.90 0 68

4 0.98 2 950 0.98 2 1042 0.98 1 54

5 0.96 2 284 0.95 2 1878 0.68 0 58

also takes into account the entire shape. For example, the functional plausibility score

of Shape 3 is derived from the category score of chair for the entire shape, which is

schair = 0.90.

5.2.4 Best Partial Matching Algorithm

In this section, we summarize the functionality analysis results of the reverse beam

search, the forward beam search, and the simplified search, to determine the best

method to be used in practice. The results of each algorithm are analyzed based on

the best parameter settings as discussed in Section 5.2.1 and Section 5.2.2, i.e., the

reverse beam search uses a beam width of 2, and the forward beam search uses a beam

width of 2 and starts the tree expansion from initial partial shapes with 3 parts. In

Table 5.9, for each test shape, we summarize the functionality analysis results of the

different partial matching algorithms in three aspects: (i) the functional plausibility

score sp, which is derived from the highest best category score captured by the partial

CHAPTER 5. EXPERIMENTAL EVALUATION 55

matching algorithm, as described in Section 4.4.1; (ii) the multi-functionality score

sm, which is derived from the number of category scores that exceed the threshold

θ = 0.9, as described in Section 4.4.2; (iii) the execution time t of the partial matching

algorithm, in seconds.

From Table 5.9 we find that, in terms of the functional plausibility score sp,

the reverse beam search and the forward beam search present similar results. The

average functional plausibility scores derived by the reverse beam search and the

forward beam search are 0.97 and 0.96. The slightly higher average score derived by

the reverse beam search indicates that the partial matches captured by the reverse

beam search are a bit more reasonable than those captured by the forward beam

search. However, the simplified search cannot capture as reasonable partial matches

as the other two algorithms. The average functional plausibility score derived by the

simplified search is 0.90.

In terms of the multi-functionality score sm, both the reverse beam search and the

forward beam search can capture the number of functionalities that the test shapes

possess. Each test shape is generated from two parent shapes of single functional

category, so that the multi-functionality score of each test shape is 2. However, the

simplified search is unable to reveal the multi-functionality of the test shapes. The

multi-functionality score computed by the simplified search is either 1 or 0.

From the perspective of execution time, the reverse beam search and the forward

beam search take on average 534 s and 1274 s, respectively. The reverse beam search

not only presents a higher analytical accuracy, but also is 58.1% faster than the

forward beam search. Although the simplified search takes only 58 s on average, being

much faster than the reverse beam search, it does not provide reasonable analysis

results for most of the test shapes.

Therefore, according to this summary, we can conclude that the reverse beam

search with beam width of 2 is the best partial matching scheme, of which a visualized

example is illustrated in Figure 1.1, providing both reasonable analysis results and

execution time. More visualized examples can be found in Appendix B.

Chapter 6

Applications

In this chapter, we present two applications of functionality partial matching, namely,

3D functionality-aware model evolution and 3D data augmentation for shape segmen-

tation.

6.1 3D Functionality-Aware Model Evolution

Functionality-aware model evolution is the key application presented in this thesis

that benefits from functionality analysis. Without proper functionality analysis, the

evolutionary shape modeling framework described in Chapter 3 can still generate a

large amount of shapes that are not functionally plausible, as shown in Figure 6.7(a),

even when incorporating functionality labels to constrain the evolutionary process.

With functionality partial matching integrated into the evolutionary framework and

the functional plausibility score described in Section 4.4.1, unreasonable shapes gen-

erated during the evolutionary process are filtered out. Based on this method, we

develop a functionality-aware modeling tool that enables functionality-aware model

evolution, which is capable of generating a large volume and variety of shapes that

are functionally plausible, including hybrid shapes.

In this section, we present the results of the functionality-aware modeling tool

used in different modeling scenarios as well as the evaluation and analysis of the

modeling results. We also provide comparisons to existing modeling tools.

We experiment with the functionality-aware modeling tool using the parameter

settings described in preceding chapters. The experiments were conducted on 3D

objects belonging to 15 functional categories including chair, desk, cart, and shelf.

56

CHAPTER 6. APPLICATIONS 57

Input set Part group creation

...

...

...
Crossover with functionality partial matching

Unconstrained

Constrained
sitting, rolling ...

0.8860.915

0.858

0.869

...
0.7720.8700.875

0.799

g1
g2

g3

g4

g5

Figure 6.1: Starting from a set of segmented 3D shapes, we construct part groups
for each shape, where a part group gi is composed of a combination of one or
more shape parts (left). We apply crossover and mutation operations, i.e., part
group exchange and part group insertion, as described in Chapter 3, to create
a variety of novel shapes (right). The evolutionary process can be performed in
an unconstrained or constrained manner. In the constrained evolution, the user
prescribes functionalities that should appear in the output shapes, e.g., sitting
and rolling. The resulting shapes are then ranked according to their functional
plausibility. Finally, the user can select shapes to be part of the next generation
for further evolution.

The 15 functional categories are adopted from the work of Hu et al. [23]. We also

predefine 10 different functionality part labels, such as sitting, placement, storage,

and rolling. Evolving one generation with random crossovers from a population of

4 shapes with a pool of 17 part groups (including null part groups) and 8 function-

ality labels can generate 31 shapes. With user constraints (constraining with two

functionality labels) that filter out the unwanted functionalities, on average 6 off-

spring shapes are produced during the generation. If a simplified search is adopted

for functionality partial matching, the time needed to evolve one generation from this

population is about 6min, where evolutionary operations take about 1min (about

16.7% of the computation time for a generation) and functionality partial matching

takes 5min (the remaining 83.3% of the computation). The time needed to com-

pute the functional plausibility score of a single offspring is 50 s on average with the

simplified search. If a reverse beam search is employed, the time for evolving one

generation from the same population is about 55min, where evolutionary operations

take about 1min (about 1.8% of the computation time for a generation) and func-

tionality partial matching takes 54min (the remaining 98.1% of the computation).

The time needed to compute the functionality scores of a single offspring with the

reverse beam search is on average 9min. The largest population we tested includes 17

CHAPTER 6. APPLICATIONS 58

G1

G2

G3

Initial
population

Figure 6.2: A gallery of modeling results from unconstrained evolution obtained with
our functionality-aware approach. The first row shows two initial populations of
four objects each, one per column. The next three rows show selected offspring
from subsequent generations. The generations contain 78, 113, and 52 shapes
in total for the set in the first column, and 31, 96, and 45 shapes for the set in
the second column.

shapes, taking 2.2 h to evolve one generation (with user constraints and the simplified

search). Pre-processing of an initial population of 4 shapes takes on average 15min,

including functional proto-patch mapping and part group creation.

6.1.1 Modeling Scenarios

Our functionality-aware modeling tool can perform model evolution under two mod-

eling scenarios: (i) unconstrained modeling, where an open-ended exploration is con-

ducted over an initial set of input shapes without any user intervention; (ii) con-

strained modeling, where a few user constraints are incorporated, such as the selec-

tion of functionalities that the output shapes should possess. In both evolutionary

modeling scenarios, the evolved shapes are presented to the user according to the

descending order of functional plausibility score. An overview of our modeling tool is

CHAPTER 6. APPLICATIONS 59

illustrated in Figure 6.1. Unless otherwise indicated, we mimic the process in which

users would handpick interesting offspring from a large and diverse set of shapes, and

show for each figure in this section the selected shapes from the evolved populations.

Unconstrained Modeling

The results of unconstrained evolution are shown in Figure 6.2. It can be observed

that many of the evolved shapes are truly cross-category, as they combine multiple

functionalities from two or more parents, e.g., the movable shelves and table-shelves

in the first column, or the sittable shelves in the second column. The more generations

are evolved, the more shapes with complex and mult-functional features are generated.

For example, from the third generation (G3) for both columns, we can find hybrid

shapes that have parts from all four parent shapes of the initial population.

We also observe in the results that our tool can handle shapes that do not belong to

the predefined functional categories. For example, in the second column of Figure 6.2,

we see a horse-shaped toy in the initial population that does not belong to any of the

predefined functional categories. However, by manually labeling the toy’s parts with

appropriate functionality labels such as rocking and sitting, our evolution can combine

the parts from this object with other shapes to create offspring shapes that preserve

these functionalities. Finally, we note that when the functionality of a parent shape

is transferred to an offspring, the functionality is preserved without obstructions to

the functional spaces.

Constrained Modeling

Our tool works most effectively when the evolution is guided by user constraints.

In the constrained modeling scenario, the user can first come up with a design goal

such as “generating shapes that enable storage and transportation”, and then select

appropriate functionality labels as constraints to ensure that these functionalities

appear in the offspring shapes. During evolution, our tool provides concrete examples

of shapes satisfying the constraints. The user can examine the generated shapes to

select and further evolve the preferred ones.

We show the results of constrained evolution in Figure 6.3, in which we present

three generations of offspring shapes evolved from one set of input shapes. It can be

CHAPTER 6. APPLICATIONS 60

G1: placement, grasping

G2: evolving only selected shapes (blue color) from G1

G3: storage, rolling

Initial population

Figure 6.3: Results of constrained evolution by our functionality-aware modeling
tool. The user evolves the initial population by constraining the offspring shapes
with the functionality labels placement and grasping, obtaining the first genera-
tion (G1). The user then selects the shapes marked in blue in the first generation
(G1) to be further evolved, to get the second generation (G2). Finally, the func-
tionality constraints storage and rolling are included as new preferences into the
evolution of all the shapes, to obtain the third generation (G3).

CHAPTER 6. APPLICATIONS 61

Figure 6.4: Starting from a heterogeneous collection of four shapes (in gray) as
initial population, our functionality-aware modeling tool is able to generate a
variety of offspring shapes (in yellow) with a combination of constrained and
unconstrained evolution. Some of the offspring shapes exhibit forms of cross-
category structure breaking.

observed that the user-specified functionalities are preserved in all of the offspring

shapes but are enabled in various manners. For example, in offspring shapes from the

first generation (G1) and the second generation (G2), the functionalities of placement

and grasping are enabled by combining placement of shelf planks or desktops with

grasping of handles; in offspring shapes from the third generation (G3), the func-

tionalities of storage and rolling are enabled by adding wheels to storage objects like

baskets and shelves, with functionalities like placement and grasping also inherited

from the parent shapes in the second generation (G2).

Moreover, Figure 6.4 presents a set of hybrid shapes generated with a combina-

tion of constrained evolution and unconstrained evolution. In the first generation,

placement is the only constraint specified by the user for evolution, to ensure that

the generated shapes can be used to hold objects. Then, a few of the resulting shapes

are selected by the user and are further evolved in an unconstrained manner so as

to obtain more object variations. This demonstrates the flexibility of the evolution

approach where different types of modeling scenarios can be combined to guide the

evolution. We also note that this varied set with 19 shapes was obtained by evolving

only four input shapes.

6.1.2 Evaluation and Comparisons

We evaluate our evolutionary modeling tool from different perspectives, including the

ability to break structures, the scalability of the evolutionary process, and the ranking

CHAPTER 6. APPLICATIONS 62

Table 6.1: Statistics of structure breaking in the evolved shapes.

Input set M G %β

Figure 6.2 left 4 24 45%

Figure 6.2 right 4 17 6.4%

Figure 6.4 4 21 25%

of the functionality scores of the evolved shapes. We also compare the evolved shapes

provided by our method to those provided by the methods of Zheng et al. [65] and

Fu et al. [15].

Structure Breaking

It can be observed from the evolutionary modeling results that, the ability to break

structures, such as symmetries, during part composition is a unique feature of our

cross-category modeling tool, which allows the evolution to introduce variations in

the structure of the generated shapes. In Table 6.1, we report percentages of offspring

shapes from our model evolution which exhibit breaking of symmetries possessed by

their parents: M denotes the number of 3D objects in the input set, G denotes the

total number of part groups obtained from the input set, and %β denotes the average

percentage of the offspring shapes produced by the evolution which break symmetries

from their parents. The percentage of offspring shapes exhibiting symmetry breaking

can vary considerably, e.g., 45% for the set shown on the left of Figure 6.2, 6.4% for

the set on the right of Figure 6.2, and 25% for the set shown in Figure 6.4.

Scalability

We evaluate the scalability of our evolution in two aspects: (i) the number of shapes

evolved and (ii) the number of functionalities given by the user as constraints. In

Figure 6.5, we see that functionally plausible shapes are produced from requesting

not only a small number of functionalities such as 2 or 3, as shown in Figure 6.5(a)

and Figure 6.5(b), but also a larger number of functionalities such as 5, as shown in

Figure 6.5(c). We also observe that the generated shapes are true hybrid shapes that

can serve multiple functionalities. For example, the hybrid chairs in Figure 6.5(c),

CHAPTER 6. APPLICATIONS 63

sitting, leaning, grasping, placement, rolling

placement, grasping, rollingsitting, leaning, placement

 storage, graspingplacement, storage
(a) Shapes with 2 functionalities

(b) Shapes with 3 functionalities

(c) Shapes with up to 5 functionalities

placement, grasping,
storage, rolling

Figure 6.5: Results of model evolution where the objects are constrained to possess
2, 3, and up to 5 functionalities.

besides enabling sitting and leaning, also enable the placement of objects, and rolling

and grasping for transportation.

In Figure 6.6, we present three sets of hybrid shapes obtained by evolving the same

initial population of 17 shapes by choosing different sets of functionality constraints,

namely, sitting and leaning, placement and storage, and rolling and grasping. We use

a larger input population here than those used in the previous experiments so that

the scalability of the method can be assessed. From the results, we observe that the

evolution generates large sets with hundreds of novel shapes which are all constrained

by the user guidance.

Ranking Scores

When a large number of offspring shapes are generated, as shown in Figure 6.2, Fig-

ure 6.3, Figure 6.4, and Figure 6.6, a ranking measure is especially important so that

CHAPTER 6. APPLICATIONS 64

sitting, leaning

placement, storage

rolling, grasping

Initial population

Figure 6.6: Results of model evolution from a large initial population (17 shapes)
and with various functionality constraints to demonstrate scalability. The fol-
lowing populations are generated: sitting + leaning with 141 shapes, placement

+ storage with 234 shapes, and rolling + grasping with 258 shapes. Only the
top 18 shapes for each set are shown, according to the ranking by functional
plausibility.

CHAPTER 6. APPLICATIONS 65

(a) Low validity, low multi-func (b) High validity, low multi-func

(c) High validity, high multi-func

Figure 6.7: Comparison of ranking scores. Three sets of objects with different levels
of priority for plausibility and multi-functionality measures, i.e., from low (a)
to high (c).

the most plausible objects are presented to the user first. In Figure 6.7, we compare

the functional plausibility and multi-functionality measures as choices for ranking the

shapes from Figure 6.6. We observe a noticeable difference in the objects with different

scores, where objects with high values for the two measures appear more functional

than objects with low scores. In addition, objects with high multi-functionality scores

tend to combine several functionalities. Thus, these measures enable the user to save

time by only inspecting the most promising prototypes. The user, focusing either

on general functional validity or mixing of multiple functionalities, can choose one

measure over the other depending on whether the focus of the exploration is to ob-

tain objects that are functionally plausible in general, or to retrieve objects that mix

multiple functionalities.

Comparisons

In Figure 6.8, we compare our method to that of Zheng et al. [65] by applying our

model evolution to one of their input sets, with the same shape segmentations. Recall

that their method is designed to preserve a specific type of three-part symmetric sup-

port substructure (sFarr) in the input and limited to six combination rules, while

our method is more generic and even allows symmetry breaking. We observe that

our generic hybridization/crossover approach, i.e., without explicitly modeling or en-

forcing any specific symmetries or support structures, can also generate the types of

CHAPTER 6. APPLICATIONS 66

Input set from Zheng et al. [65]

A selection from our results

Results of Zheng et al. [65]

Figure 6.8: A comparison of our shape generation results to those from Zheng et
al. [65], on an input set from their work. The set of offspring shapes generated
by our method contains not only shapes producible by their method (shapes in
yellow), but also other shapes (in blue) which their method cannot produce for
various reasons discussed in the text.

shapes that their method can. At the same time, their method is able to generate

cross-category hybrids, but the functionality that is explicitly preserved in all of the

generated shapes involves mainly support structures that are captured by symmetric

functional substructures. On the other hand, our modeling tool is able to achieve more

general part recombinations and produce shapes exhibiting larger functional varia-

tions, e.g., the combination of sitting and storage that appears in the couch hybridized

with a bench and a shelf, where two different parts are attached to the supporting

structure. Moreover, we remark that their method is able to generate interesting

variations for this input set where all shapes have symmetric support structures, but

their method is not applicable to more general shapes like the asymmetric desks that

we evolved in Figure 6.4 or Figure 6.6.

In Figure 6.9, we compare our method to that of Fu et al. [15], which can syn-

thesize a cross-category, functional hybrid to fulfill the affordance constraint defined

by an input human pose. The comparison results demonstrate that our evolutionary

CHAPTER 6. APPLICATIONS 67

(a) Input objects (b) Fu et al. [15] (c) Our results

Figure 6.9: Comparison to functional hybrid generation by Fu et al. [15]. In each
row, we show the 3D shapes identified by their method (left) that match a
human pose and the hybrid shape produced (middle). Using the same 3D
shapes as the initial population, our method is able to generate a more diverse
set of hybrids (right), including one that well resembles the outcome from their
method, without a human pose as constraint.

modeling tool is able to produce similar hybrids, without specifying a human pose

or explicit affordance constraints, as well as other hybrids which are also functionally

plausible. On the other hand, an input human pose does narrow down the search for

potential parent shapes and part placements; the resulting synthesized shape would

more closely serve a specific target functionality.

6.2 3D Data Augmentation

We have shown that our functionality-aware model evolution is able to generate a

large and diverse population of functionally plausible offspring shapes. However,

CHAPTER 6. APPLICATIONS 68

0 20 40 60 80 100 120 140
82

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

Chairs

0 20 40 60 80 100
Number of hybrid shapes added to training set

93

94

95

Ac
cu

ra
cy

 (%
)

Tables

Figure 6.10: Results showing improved accuracy via data augmentation for learning
shape segmentation, using PointNet, for two sets of shapes. The ShapeNet
training set is augmented progressively with shapes evolved using our tool.
Please refer to the text for details.

from the perspective of modeling and design exploration, there are usually only a few

shapes that can inspire new designs in an evolved population. On the other hand,

data augmentation, which is aimed at boosting the performance of learning-based

shape analysis schemes, is a venue where we can utilize most, if not all, of the evolved

shapes from our modeling tool. We expect these shapes to serve as useful training

data since they are both plausible, partially resembling potential test shapes, and

diverse, providing a better coverage of the distribution of test shapes.

To demonstrate the potential of our method for data augmentation, we use the

generated offspring to augment training data for one key application: shape segmen-

tation of partial shapes. To create a set of labeled shape segmentations, we assign

labels to the already segmented parent shapes, which usually constitute a small set

that can be manually labeled by a human in a short time. Then, we keep the labels as-

signed to each part as we evolve the parents into a large set of segmented and labeled

shapes. We use this data to augment the training data for shape segmentation.

Specifically, we evolve two input populations. The first one is composed of 7

chairs and 9 shapes from other classes that add diversity to the set, resulting in

CHAPTER 6. APPLICATIONS 69

(a) ShapeNet set (b) The augmented set (c) Ground truth

Figure 6.11: Visual results of PointNet segmentation on partial test shapes, using
ShapeNet training set vs. the augmented training set (ShapeNet + our shapes).

an evolved population of 138 hybrid chairs, since we constrain the offspring to the

functionality of chairs. The second one is composed of 10 tables and 5 shapes from

other classes, resulting in 100 hybrid tables. For the experiments, we use PointNet [49]

for segmenting point clouds, where we uniformly sample our shapes with 2048 points.

To show how our data can aid in learning to segment diverse shapes, especially when

partial matching is needed, we create a test set of partial shapes, where parts are

randomly removed from ShapeNet [6] shapes. We augment the ShapeNet training set

used by PointNet with our training shapes composed of hybrid shapes, and evaluate

the predicted segmentations on the test set of partial shapes.

Figure 6.10 shows the results of data augmentation with increasing numbers of

shapes from our training set, where we evaluate the segmentations by measuring the

CHAPTER 6. APPLICATIONS 70

label accuracy. We observe how each additional batch of shapes helps to improve the

accuracy on the chair set, with a gain of around 8%. The accuracy is also slightly

improved for tables, which typically have a simpler structure. Moreover, the data

points with x = 0 represent the accuracy obtained when only the ShapeNet training

set is used for learning. We notice how the accuracy is much lower than when our

more diverse shapes are used for training, demonstrating that the diverse, plausible

shapes do provide additional information for the learning of the deep network.

We confirm this reasoning by visually inspecting the results, such as the set of

examples shown in Figure 6.11. Note how the segmentations of these partial shapes

have considerable errors when only the ShapeNet set is used for training. On the

other hand, we obtain a much refined segmentation, closer to the ground truth, when

our evolved shapes are used for data augmentation. For example, the chair-stool

combo in the second row is missing the side handles, but the ShapeNet data alone

still leads to a segmentation with this label. In the third row, the leg label appears

below the seat, while with our data we obtain a better prediction of chair seats and

back rests.

Chapter 7

Conclusion

We present a novel functionality analysis method, based on functionality partial

matching, for evaluating functionalities of hybrid shapes. With functionality par-

tial matching, the category functionality models of Hu et al. [23] can be localized to

the part/patch level to enable finding the partial shape from a hybrid shape that best

fits to a known functional category.

We incorporate our functionality analysis into the “fit and diverse” set evolution

framework of Xu et al. [63] and present the first functionality-aware and user-in-

the-loop modeling tool to evolve a set of 3D objects, aimed at producing large and

diverse sets of functionally plausible offspring. Rather than restricting part exchange

to objects within the same category, as done by Xu et al. [63] and all the works so far

on structure-preserving modeling [41], our method excels at generating cross-category

hybrids while allowing structure breaking. In the end, our evolutionary modeling tool

makes a promising step towards 3D content generation to generate a large number

of shapes with intra-class and inter-class variety, producing generations and genera-

tions of within-category shapes and cross-category hybrids via controlled stochastic

part exchange. The generated shapes show the potential for data augmentation that

improves 3D shape segmentation with atypical inputs.

7.1 Limitations

There is still plenty of room to improve our current method from a technical per-

spective. Our main technical limitations stem from our set goal of only producing

rough design prototypes, where the emphasis has been on functional properties of

the offspring shapes, not their precise geometries. Specifically, our part exchange

71

CHAPTER 7. CONCLUSION 72

procedure only applies non-uniform part group scaling, while free-form deformations

should allow a richer variety of offspring. Moreover, our current part connection

mechanisms still lack an understanding of shape semantics and are unable to resolve

topological mismatches. At the same time, our current functional plausibility score

and constrained evolution only offer a starting point for further investigation and

development. Last but not the least, we provide the option of computing plausibility

scores with a detailed functionality partial matching. However, the computation re-

lies on an expensive search procedure. Thus, directions for future work include more

efficient manners of detecting partial functionalities of shapes, including the use of

learning-based methods.

Moreover, real-world design tasks are often characterized by various spatial, aes-

thetic, and functionality constraints. Our current modeling tool is inherently con-

strained by selection of the initial population, the available functionality models, as

well as user preferences expressed during a modeling session. Our modeling tool does

not incorporate other types of aesthetic constraints, such as style.

7.2 Future Work

In future work, besides addressing the above limitations, we would also like to ex-

plore other functionality modeling paradigms. For example, instead of performing

functionality-preserving style transfer, as in the work by Lun et al. [37], we can invert

the problem to style-preserving functionality transfer : to transfer the extracted func-

tionalities from a given shape to another shape, while preserving its stylistic features.

Our evolution-based modeling offers a partial solution to this problem. Specifically, a

part exchange between two shapes is implicitly transferring functionalities associated

with the exchanged part groups between the shapes.

Another interesting problem to study is functional analogy, i.e., to synthesize a

new shape SB
′ from an input SB by adding functionalities to SB, so that the pair, SB

and SB
′, has functionality differences analogous to those between two given shapes

SA and SA
′.

Moreover, with the development of measures for estimating functional similarity,

validity, and novelty, we could treat functionality as a relative attribute and learn

metric spaces for functionality analysis tasks. The work by Yumer et al. [64] is able

to learn semantic attributes to enable continuous shape deformation in the learned

CHAPTER 7. CONCLUSION 73

semantic spaces. It would be interesting to explore whether similar approaches are

possible for functional attributes and deformation. The key challenge is how to pa-

rameterize part exchange operations, which are inherently discrete. Generally, we do

not yet know how to construct a continuous “generative functional space” for either a

homogeneous or a heterogeneous shape collection. On a positive note, the modeling

tool developed in our work can produce a lot of 3D shape data to support this pursuit.

List of References

[1] E. Balashova, V. Singh, J. Wang, B. Teixeira, T. Chen, and T. Funkhouser,
“Structure-aware shape synthesis,” in Proceedings of the International Confer-
ence on 3D Vision, 2018, pp. 140–149.

[2] E. Bar-Aviv and E. Rivlin, “Functional 3D object classification using simulation
of embodied agent,” in Proceedings of the British Machine Vision Conference,
2006, pp. 307–316.

[3] S. Bergen and B. J. Ross, “Aesthetic 3D model evolution,” Genetic Programming
and Evolvable Machines, vol. 14, no. 3, pp. 339–367, 2013.

[4] M. Bokeloh, M. Wand, H. Seidel, and V. Koltun, “An algebraic model for pa-
rameterized shape editing,” ACM Transactions on Graphics, vol. 31, no. 4, pp.
78:1–78:10, 2012.

[5] H. J. Bremermann, “Optimization through evolution and recombination,” in
Self-Organizing Systems, 1962, pp. 93–106.

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet:
An information-rich 3D model repository,” CoRR, vol. abs/1512.03012, 2015.

[7] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun, “Probabilistic reasoning
for assembly-based 3D modeling,” ACM Transactions on Graphics, vol. 30, no. 4,
pp. 35:1–35:10, 2011.

[8] S. Chaudhuri and V. Koltun, “Data-driven suggestions for creativity support in
3D modeling,” ACM Transactions on Graphics, vol. 29, no. 6, pp. 183:1–183:9,
2010.

[9] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung, “On visual similarity based 3D
model retrieval,” Computer Graphics Forum, vol. 22, no. 3, pp. 223–232, 2003.

[10] C. Coia and B. J. Ross, “Automatic evolution of conceptual building architec-
tures,” in Proceedings of the IEEE Congress on Evolutionary Computation, 2011,
pp. 1140–1147.

[11] C. Darwin, On the Origin of Species. John Murray, 1859.

[12] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,
2003.

74

75

[13] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Springer, 2002.

[14] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer, “Upright orientation of man-made
objects,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 42:1–42:7, 2008.

[15] Q. Fu, X. Chen, X. Su, and H. Fu, “Pose-inspired shape synthesis and functional
hybrid,” IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 12, pp. 2574–2585, 2017.

[16] P. J. Funes and J. B. Pollack, “Computer evolution of buildable objects for
evolutionary design by computers,” in Proceedings of the European Conference
on Artificial Life, 1997, pp. 358–367.

[17] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” ACM Transactions
on Graphics, vol. 23, no. 3, pp. 652–663, 2004.

[18] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iWIRES: An analyze-and-
edit approach to shape manipulation,” ACM Transactions on Graphics, vol. 28,
no. 3, pp. 33:1–33:10, 2009.

[19] D. Gonzalez and O. van Kaick, “3D synthesis of man-made objects based on
fine-grained parts,” Computers & Graphics, vol. 74, pp. 150–160, 2018.

[20] Y. Guan, H. Liu, K. Liu, K. Yin, R. Hu, O. van Kaick, Y. Zhang, E. Yumer,
N. Carr, R. Mech, and H. Zhang, “3D shape generation via functionality-aware
model evolution,” under review.

[21] M. Hemberg, U. O’Reilly, A. Menges, K. Jonas, M. da Costa Gonçalves, and
S. R. Fuchs, “Genr8: Architects’ experience with an emergent design tool,” in
The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music,
2008, pp. 167–188.

[22] R. Hu, M. Savva, and O. van Kaick, “Functionality representations and applica-
tions for shape analysis,” Computer Graphics Forum, vol. 37, no. 2, pp. 603–624,
2018.

[23] R. Hu, O. van Kaick, B. Wu, H. Huang, A. Shamir, and H. Zhang, “Learning how
objects function via co-analysis of interactions,” ACM Transactions on Graphics,
vol. 35, no. 4, pp. 47:1–47:12, 2016.

[24] R. Hu, Z. Yan, J. Zhang, O. van Kaick, A. Shamir, H. Zhang, and H. Huang,
“Predictive and generative neural networks for object functionality,” ACM
Transactions on Graphics, vol. 37, no. 4, pp. 151:1–151:13, 2018.

[25] R. Hu, C. Zhu, O. van Kaick, L. Liu, A. Shamir, and H. Zhang, “Interaction con-
text (ICON): Towards a geometric functionality descriptor,” ACM Transactions
on Graphics, vol. 34, no. 4, pp. 83:1–83:12, 2015.

[26] H. Huang, E. Kalogerakis, and B. Marlin, “Analysis and synthesis of 3D shape
families via deep-learned generative models of surfaces,” Computer Graphics Fo-
rum, vol. 34, no. 5, pp. 25–38, 2015.

76

[27] S. Huang, H. Fu, L. Wei, and S. Hu, “Support substructures: Support-induced
part-level structural representation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 8, pp. 2024–2036, 2015.

[28] C. Jacob, Illustrating Evolutionary Computation with Mathematica. Morgan
Kaufmann, 2001.

[29] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun, “A probabilistic model
for component-based shape synthesis,” ACM Transactions on Graphics, vol. 31,
no. 4, pp. 55:1–55:11, 2012.

[30] V. G. Kim, S. Chaudhuri, L. Guibas, and T. Funkhouser, “Shape2Pose: Human-
centric shape analysis,” ACM Transactions on Graphics, vol. 33, no. 4, pp. 120:1–
120:12, 2014.

[31] V. G. Kim, W. Li, N. J. Mitra, S. DiVerdi, and T. Funkhouser, “Exploring
collections of 3D models using fuzzy correspondences,” ACM Transactions on
Graphics, vol. 31, no. 4, pp. 54:1–54:11, 2012.

[32] V. Kraevoy, D. Julius, and A. Sheffer, “Model composition from interchangeable
components,” in Proceedings of the Pacific Conference on Computer Graphics
and Applications, 2007, pp. 129–138.

[33] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of SIG-
GRAPH, 1996, pp. 31–42.

[34] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf, O. Deussen, and B. Chen,
“Structure-preserving retargeting of irregular 3D architecture,” ACM Transac-
tions on Graphics, vol. 30, no. 6, pp. 183:1–183:10, 2011.

[35] H. Lipson and J. B. Pollack, “Automatic design and manufacture of robotic
lifeforms,” Nature, vol. 406, no. 6799, pp. 974–978, 2000.

[36] B. T. Lowerre, “The HARPY speech recognition system,” Ph.D. dissertation,
Carnegie Mellon University, 1976.

[37] Z. Lun, E. Kalogerakis, R. Wang, and A. Sheffer, “Functionality preserving shape
style transfer,” ACM Transactions on Graphics, vol. 35, no. 6, pp. 209:1–209:14,
2016.

[38] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber,
“Design galleries: A general approach to setting parameters for computer graph-
ics and animation,” in Proceedings of SIGGRAPH, 1997, pp. 389–400.

[39] J. McCormack, “Interactive evolution of L-system grammars for computer graph-
ics modelling,” in Complex Systems: From Biology to Computation, 1993, pp.
118–130.

[40] N. J. Mitra, L. J. Guibas, and M. Pauly, “Partial and approximate symmetry
detection for 3D geometry,” ACM Transactions on Graphics, vol. 25, no. 3, pp.
560–568, 2006.

77

[41] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3D geometry:
Extraction and applications,” Computer Graphics Forum, vol. 32, no. 6, pp.
195–204, 2013.

[42] N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, and M. Bokeloh, “Structure-
aware shape processing,” in Eurographics State of the Art Reports, 2013, pp.
175–197.

[43] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. J. Mitra, and L. J. Guibas,
“StructureNet: Hierarchical graph networks for 3D shape generation,” ACM
Transactions on Graphics, vol. 38, no. 6, pp. 242:1–242:19, 2019.

[44] M. O’Neill, J. McDermott, J. M. Swafford, J. Byrne, E. Hemberg, A. Brabazon,
E. Shotton, C. McNally, and M. Hemberg, “Evolutionary design using grammat-
ical evolution and shape grammars: Designing a shelter,” International Journal
of Design Engineering, vol. 3, no. 1, pp. 4–24, 2010.

[45] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas, “Discovering
structural regularity in 3D geometry,” ACM Transactions on Graphics, vol. 27,
no. 3, pp. 43:1–43:11, 2008.

[46] M. L. Pilat and C. Jacob, “Creature academy: A system for virtual creature
evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation,
2008, pp. 3289–3297.

[47] S. Pirk, V. Krs, K. Hu, S. D. Rajasekaran, H. Kang, Y. Yoshiyasu, B. Benes,
and L. J. Guibas, “Understanding and exploiting object interaction landscapes,”
ACM Transactions on Graphics, vol. 36, no. 3, pp. 31:1–31:14, 2017.

[48] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser,
“A planar-reflective symmetry transform for 3D shapes,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 549–559, 2006.

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets
for 3D classification and segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 77–85.

[50] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Proceedings of
the International Conference on Artificial Intelligence and Statistics, 2009, pp.
448–455.

[51] M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, and M. Nießner, “SceneGrok:
Inferring action maps in 3D environments,” ACM Transactions on Graphics,
vol. 33, no. 6, pp. 212:1–212:10, 2014.

[52] ——, “Pigraphs: Learning interaction snapshots from observations,” ACM
Transactions on Graphics, vol. 35, no. 4, pp. 139:1–139:12, 2016.

[53] P. Simari, E. Kalogerakis, and K. Singh, “Folding meshes: Hierarchical mesh
segmentation based on planar symmetry,” in Proceedings of the Eurographics
Symposium on Geometry Processing, 2006, pp. 111–119.

78

[54] K. Sims, “Artificial evolution for computer graphics,” in Proceedings of SIG-
GRAPH, 1991, pp. 319–328.

[55] ——, “Evolving virtual creatures,” in Proceedings of SIGGRAPH, 1994, pp. 15–
22.

[56] O. Sorkine, “Laplacian mesh processing,” in Eurographics State of the Art Re-
ports, 2005, pp. 53–70.

[57] X. Su, X. Chen, Q. Fu, and H. Fu, “Cross-class 3D object synthesis guided by
reference examples,” Computers & Graphics, vol. 54, pp. 145–153, 2016.

[58] R. Unger and J. Moult, “Genetic algorithms for protein folding simulations,”
Journal of Molecular Biology, vol. 231, no. 1, pp. 75–81, 1993.

[59] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A survey on shape
correspondence,” Computer Graphics Forum, vol. 30, no. 6, pp. 1681–1707, 2011.

[60] Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang, “SAGNet:
Structure-aware generative network for 3D-shape modeling,” ACM Transactions
on Graphics, vol. 38, no. 4, pp. 91:1–91:14, 2019.

[61] K. Xu, V. G. Kim, Q. Huang, and E. Kalogerakis, “Data-driven shape analysis
and processing,” Computer Graphics Forum, vol. 36, no. 1, pp. 101–132, 2017.

[62] K. Xu, H. Li, H. Zhang, D. Cohen-Or, Y. Xiong, and Z. Cheng, “Style-content
separation by anisotropic part scales,” ACM Transactions on Graphics, vol. 29,
no. 6, pp. 184:1–184:10, 2010.

[63] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen, “Fit and diverse: Set evolution
for inspiring 3D shape galleries,” ACM Transactions on Graphics, vol. 31, no. 4,
pp. 57:1–57:10, 2012.

[64] M. E. Yumer, S. Chaudhuri, J. K. Hodgins, and L. B. Kara, “Semantic shape
editing using deformation handles,” ACM Transactions on Graphics, vol. 34,
no. 4, pp. 86:1–86:12, 2015.

[65] Y. Zheng, D. Cohen-Or, and N. J. Mitra, “Smart variations: Functional sub-
structures for part compatibility,” Computer Graphics Forum, vol. 32, no. 2, pp.
195–204, 2013.

[66] Y. Zheng, H. Fu, D. Cohen-Or, O. K. Au, and C. Tai, “Component-wise con-
trollers for structure-preserving shape manipulation,” Computer Graphics Fo-
rum, vol. 30, no. 2, pp. 563–572, 2011.

Appendix A

Computation of Functionality Distance

The descriptor Duk
(Wi) in (4.2) is formulated by decoupling the point-level property

values from the bins of the histogram that represents uk, written as:

Duk
(Wi) = BkWi, (A.1)

where Bk ∈ {0, 1}
nu
k
×n is a constant logic matrix that indicates the bin of each sample

point for property uk. The dimension nu
k is the number of bins for property uk and n

is the number of sample points of the shape.

Therefore, based on (4.4), the unary distance is computed as:

du(W,M) =
∑

i

∑

ui,k

αu
k ‖BkWi −N (ui,k)‖

2

F
. (A.2)

Similarly, based on (4.5), the binary distance is computed as:

db(W,M) =
∑

i,j

∑

bi,j,k

αb
k

nb
k

∑

l=1

(

W T
i B

b
k,lWj −N (bi,j,k)l

)2

=
∑

bk

nb
k

∑

l=1

αb
k

∑

i,j

(

W T
i B

b
k,lWj −N (bi,j,k)l

)2

=
∑

bk

nb
k

∑

l=1

αb
k

∥

∥W T
B

b
k,lW −N b

k,l

∥

∥

2

F
,

(A.3)

where B
b
k,l ∈ {0, 1}

n×n is a logical matrix that indicates whether a pair of samples

contributes to bin l of the histogram representing bk, n
b
k is the number of histogram

79

APPENDIX A. COMPUTATION OF FUNCTIONALITY DISTANCE 80

bins, and N b
k,l = [N (bi,j,k)l; ∀i, j] ∈ R

m×m, where m is the number of proto-patches

inM and N (bi,j,k)l is the lth bin of the histogram N (bi,j,k). Note that both B
b
k,l and

N b
k,l are symmetric.

Appendix B

Examples of Beam Search

Given a hybrid shape possessing multiple functionalities, Figure B.1, Figure B.2, and

Figure B.3 show the complete reverse beam search with a beam width of 2 conducted

on the shape and the optimal partial shapes found for three functional categories:

chair, desk, and shelf.

81

APPENDIX B. EXAMPLES OF BEAM SEARCH 82

0.572 0.429 0.304 0.184 0.005

0.962 0.2590.161 0.1470.024 0.0040.000

0.446 0.094 0.0590.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.339

Figure B.1: Beam search for functionality partial matching, where we search for
the subset of parts that provides the highest score for the chair category.

0.661 0.009 0.000 0.000 0.000

0.7570.882 0.227 0.009 0.000

0.9870.636 0.1780.145

0.824 0.0520.013

0.006 0.003 0.000

Figure B.2: Beam search for functionality partial matching, where we search for
the subset of parts that provides the highest score for the desk category.

APPENDIX B. EXAMPLES OF BEAM SEARCH 83

0.914

0.940

0.738 0.736 0.716 0.707 0.299 0.281

0.908 0.875 0.815 0.657 0.626 0.624 0.873 0.698 0.520 0.400 0.400 0.343

0.930 0.881 0.876 0.816 0.716 0.703 0.776 0.717 0.558 0.520 0.450

0.803 0.584 0.540 0.435 0.753 0.416 0.359

0.538 0.119 0.029 0.523 0.085 0.026

0.002 0.000 0.004 0.000

0.000 0.000 0.000

0.186

Figure B.3: Beam search for functionality partial matching, where we search for
the subset of parts that provides the highest score for the shelf category.

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	 Introduction
	 Background and Related Work
	3D Shape Synthesis and Modeling
	Data-Driven Assembly-Based Modeling
	Evolutionary Modeling
	Cross-Category Modeling
	Structure-Aware Modeling

	3D Functionality Analysis

	 Evolutionary Shape Modeling
	Evolution Setup
	Input and Output
	Shape Representation
	Functionality Labels
	Part Groups

	Shape Evolution
	Evolutionary Operations
	Constraints in Evolution

	 Functionality Analysis
	Functional Plausibility Modeling
	Category Functionality Model
	Score Normalization

	Shape Validity Verification
	Part-Wise Connectivity
	Physical Stability
	Functional Space

	Functionality Partial Matching
	Combinatorial Search
	Beam Search
	Simplified Search

	Functionality Scoring
	Functional Plausibility Score
	Multi-Functionality Score

	 Experimental Evaluation
	Partial Matching vs. Full Matching
	Partial Matching Evaluation
	Reverse Beam Search
	Forward Beam Search
	Simplified Search
	Best Partial Matching Algorithm

	 Applications
	3D Functionality-Aware Model Evolution
	Modeling Scenarios
	Evaluation and Comparisons

	3D Data Augmentation

	 Conclusion
	Limitations
	Future Work

	List of References
	Appendix Computation of Functionality Distance
	Appendix Examples of Beam Search

