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Abstract

Neural implicit surface representations have recently emerged as popular alternative to explicit 3D object encodings,

such as polygonal meshes, tabulated points, or voxels. While significant work has improved the geometric fidelity of

these representations, much less attention is given to their final appearance. Traditional explicit object representations

commonly couple the 3D shape data with auxiliary surface-mapped image data, such as diffuse color textures and

fine-scale geometric details in normal maps that typically require a mapping of the 3D surface onto a plane, i.e., a

surface parameterization; implicit representations, on the other hand, cannot be easily textured due to lack of config-

urable surface parameterization. Inspired by this digital content authoring methodology, we design a neural network

architecture that implicitly encodes the underlying surface parameterization suitable for appearance data. As such,

our model remains compatible with existing mesh-based digital content with appearance data. Motivated by recent

work that overfits compact networks to individual 3D objects, we present a new weight-encoded neural implicit repre-

sentation that extends the capability of neural implicit surfaces to enable various common and important applications

of texture mapping. Our method outperforms reasonable baselines and state-of-the-art alternatives.

Keywords: Neural implicit surfaces, Surface parameterization, Overfit digital content

1. Introduction

The 3D surface of an object can be encoded implicitly

as the zero isocontour of a 3D scalar field, such as a dis-

tance field [1, 2]. Neural networks have become an al-

luring and powerful tool for parameterizing these fields,

and these neural implicit representations are capable of

encoding a variety of 3D shapes. One such recent ap-

proach looks to efficiently encode a single 3D object as

the weights of a small, overfit neural network [3], un-

like the original approaches that seek to learn a latent

embedding of many 3D shapes [1]. In most cases, how-

ever, these neural implicit representations focus exclu-

sively on the underlying scalar distance field that en-

codes the surface geometry, ignoring auxiliary appear-

ance data commonly co-authored during the digital con-

tent creation process, such as diffuse colors and fine-

scale geometric deviations.

On the other hand, those works that do consider

the neural representation of object or scene appearance

tend to implicitly define the appearance properties, such
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Figure 1: A collection of textured objects, rendered using a sphere

tracer [4], where the geometry is represented by the neural implicit

surface encoded using the model of Davies et al. [3] and the texture is

applied through our neural surface parameterization.

as with continuous radiance fields [5], in a manner

that does not disentangle them from objects’ geometry.

Here, it is difficult to decouple the auxiliary appearance

data from its underlying geometry, e.g., to edit it sepa-

rately from the object data — as is standard in 3D digital

content creation pipelines.

We instead seek to learn neural representations that

are suitable for surface geometry and appearance data,
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Figure 2: The pipeline of applying our neural implicit surface param-

eterization to the neural implicit surface to enable texture mapping.

For each object, we train two neural representations, one representing

the implicit surface and the other representing the implicit parameteri-

zation. Then, when rendering the object, we can derive the associated

2D UV coordinate for any 3D location on the zero isocontour defined

by the neural implicit surface, thus allowing for texture mapping.

without entangling the two. Inspired by traditional ex-

plicit 3D object representations, i.e., meshes, we rely on

surface parameterizations [6] to treat auxiliary appear-

ance data in a manner that naturally disentangles it from

the underlying geometry. These parameterizations —

also called UV maps — map 3D points on the surface

onto a 2D chart. During visualization, we can invert this

mapping to project 2D image data onto the 3D surfaces:

a process called texture mapping.

Our main idea is to treat the surface parameterization

as an implicit bijective function, which maps 3D input

locations onto unique 2D UV coordinates, and we pa-

rameterize this function with a compact neural network.

We jointly learn an overfit neural implicit surface net-

work with our appearance mapping network for texture

mapping. Figure 1 illustrates a collection of 3D objects

with their textures applied using our learned surface pa-

rameterization. The main challenge here is that the neu-

ral surface parameterization must reason about the “un-

wrapping” of 3D surfaces onto the 2D UV texture do-

main. In practice, object textures comprise a discontinu-

ous collection of piecewise smooth charts for each mesh

segment, known as a texture atlas.

The discontinuous, multimodal nature of these charts

makes them challenging to learn, and we propose a sim-

ple and effective learning strategy — which relies on

applying a spatial decomposition when conditioning the

input of the network — to tackle this difficulty. The de-

composition components are defined for the input 3D

locations based on the parameterization charts, each of

which corresponds to a segment of the surface. We

then apply a weight-encoded neural implicit representa-

tion to the surface parameterization, overfitting a feed-

forward multilayer perceptron (MLP) to individual ob-

jects and their UV maps.

Our model can be applied directly to neural implicit

surfaces and enables texture mapping on these surfaces,

as illustrated and explained in Figure 2. In this paper,

we apply our model jointly with overfit representations

of neural implicit surfaces (e.g., [3]) with only modest

overhead.

2. Related work

We briefly review the relevant literature, including

neural implicit surface and appearance, surface param-

eterization, and overfit neural representations.

Neural implicit surfaces. Neural networks can approx-

imate scalar functions f : R3 → R, where surfaces are

implicitly represented as zero isocontours of a level set.

These functions include occupancy fields [7, 8], dis-

tance fields [1, 2], or space partitioning trees [9, 10]. Re-

cent works show that neural networks implemented with

periodic functions [11, 12, 5] can improve the approxi-

mation of these scalar functions with reconstructions of

high frequency details. Davies et al. [3] overfit neural

networks to single shapes as weight-encoded represen-

tations of 3D surfaces, which can be interpreted as an

efficient and lossy compression of 3D shapes. Takikawa

et al. [13] propose a hierarchical representation that can

be adaptively scaled to different level of details, com-

bining neural implicit surfaces with an octree feature

volume, for rapid final visualization.

These works focus only on 3D geometric surface rep-

resentations, precluding texture and appearance map-

ping.

Neural implicit appearance. Similar to implicit sur-

faces, the appearance of objects or scenes can also be

implicitly modeled by a neural network as a continu-

ous function, typically mapping from 3D locations to

RGB colors [14, 15, 16, 17]. These mappings are lim-

ited to representing simple, unimodal (i.e., only diffuse

color) textures. To support a greater diversity of appear-

ance properties, implicit surface light field by Oechsle

et al. [18] conditions their model on lighting and view-

point information, allowing the model to represent prop-

erties such as specular reflection and shadows. Neu-

ral radiance fields (NeRFs) [5] take a continuous 5D

input space (3D location and 2D view direction) and

map them to volumetric RGB opacities that can be accu-

mulated to form 2D images using a (differentiable and

costly) volume sampling-based reconstruction.

2



These continuous, implicit volumetric appearance

functions are inflexible and hard to manipulate. To

address this limitation, NeuTex [19] uses a separate

network — atop of a volumetric NeRF representation

— in an attempt to disentangle texture content into

a 2D projective space parameterized by a cube map.

AUV-Net [20] learns to embed 3D surfaces into aligned

2D spaces and generates corresponding texture images,

thus enabling texture transfer. While similar in spirit to

our motivation, we instead directly learn for each indi-

vidual object the surface parameterization that can be

used to map any auxiliary appearance data onto our 3D

surfaces during visualization.

Surface parameterization. Computing a surface param-

eterization of a 3D object is a long-standing problem

in computational geometry and computer graphics, and

we refer interested readers to the comprehensive survey

by Sheffer et al. [6]. Briefly, a surface parameteriza-

tion refers to a bijective mapping from 3D locations on

an object’s surface to 2D UV coordinates in a charted

parameter space. Algorithms for computing planar pa-

rameterizations from explicit polygonal mesh surfaces

include methods that compute surface-to-surface bijec-

tive mappings — such as with graph embeddings [21]

— or those that minimize distortion metrics of the orig-

inal mesh, e.g., angular [22, 23, 24], distance [25, 26],

area [24, 27], and boundary distortions [28]. Surfaces

of greater geometric complexity introduce more distor-

tion in these parameterizations so that, in practice, mesh

cutting and chart packing [29, 24] are usually neces-

sary in order to segment the original surface into sev-

eral charts suitable for independent parametric distor-

tion minimization.

Recently, given the advances of gradient-based opti-

mization for neural networks and the growing availabil-

ity of large 3D surface datasets, parameterization has

also been studied through the lens of a neural repre-

sentation problem, where networks are trained to map

2D coordinates to 3D surface locations [30, 31, 32, 33].

These methods aim to recover the geometry of 3D sur-

faces in a parametric manner and cannot be directly ap-

plied to our auxiliary appearance texture mapping set-

ting. Our model instead learns the inverse mapping, di-

rectly reasoning about the UV maps of parameterization

charts in an underlying texture atlas.

Overfit digital content. Recent work has shown that the

weights of simple feed-forward MLPs can yield efficient

compressed representations for many forms of digital

content, including images (by mapping pixel locations

to RGB values [34, 35]) and 3D shapes (by mapping

3D locations to signed distances [3, 36]). The diffi-

culty of encoding high frequency signals with MLPs

can be mitigated using periodic encodings and activa-

tions [11, 12, 5]. The compression speed and rate-

distortion performance can be improved through meta-

learned initializations [35, 37].

We also rely on weight-encoded neural implicit sur-

face parameterizations, overfitting MLPs to objects’

UV maps. Our model complements existing work on

weight-encoded neural representations that focus exclu-

sively on geometry encoding [3]. We further achieve a

higher compression rate by pruning our model using the

lottery ticket method [38].

3. Methodology

The parameterization of a surface S is defined as a

mapping from the surface points pS ∈ S to UV coordi-

nates u ∈ R2, denoted as:

UVS(pS) = u. (1)

To make this function applicable jointly with an implicit

surface defined by the signed distance function (SDF),

we want to have both functions work on a consistent do-

main. Therefore, we extend the parameterization func-

tion to all query points p ∈ R3 as follows:

UV(p) = UVS

(

arg min
pS

|p − pS|

)

. (2)

Our objective is to train a neural network fθ that approx-

imates this parameterization function, such that

fθ(p) ≈ UV(p). (3)

We describe our method for representing surface sig-

nal parameterization using neural networks. We first ex-

plain how we generate the training data and then the de-

sign of our neural implicit representation.

3.1. Training set

We sample our training set based on the importance

sampling [39] scheme proposed by Davies et al. [3],

which permits the integration of weighting functions to

define the importance over the sampling domain. For

each sample point, apart from the UV coordinate given

by Equation 2, we generate a decomposition component

label indicating the surface segment in a texture atlas to

which the point belongs.
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Importance sampling. Given the SDF describing an ob-

ject’s surface that maps every point coordinate p in the

3D sampling space to a scalar distance d ∈ R, denoted

as:

SDF(p) = d, (4)

and a neural network gθ′ that approximates the SDF:

gθ′ (p) ≈ SDF(p), (5)

the objective of the weighting function is to assign

higher weights to 3D locations that are closer to the im-

plicitly defined surface SDF(·) = 0, such that the signals

closer to the surface can be better represented by neu-

ral networks during learning. Specifically, we use the

following metric [3] to define the importance for each

sample point:

w(p) = e−β|SDF(p)|, (6)

where β is a coefficient ranging [0,+∞]. In our experi-

ments, we set β = 60. We then apply a Monte Carlo ap-

proximation to down-sample a set S of n points from a

set of m uniformly sampled points U, such that the mean

absolute error (MAE) between the real distances and

the distances predicted by the neural approximation gθ′

computed over the down-sampled set is approximated

to the weighted MAE over the uniformly sampled set,

i.e.,

1

n

∑

p∈S

|SDF(p) − gθ′ (p)|

≈
1

m

∑

p∈U

|SDF(p) − gθ′ (p)|w(p).

(7)

Davies et al. [3] provide the full details of this sam-

pling scheme and it applies seamlessly to our setting.

Spatial decomposition. Previous research on deep gen-

erative models has observed that conditioned inputs can

help models learn complex structured output represen-

tations [40]. We observe that the discontinuities and

the piecewise nature of parameterization charts in tex-

ture atlases complicate learning; neural networks sim-

ply tend to learn smoothed boundaries, which for tex-

ture mapping specifically results in jarring visual arti-

facts. To minimize this effect, we assign a unique dis-

crete label to each region of the parameterization charts,

and condition the input to our model on this decompo-

sition signal to indicate different surface segments ac-

cording to the parameterization charts.

Given a texture atlas composed of k parameterization

charts for k different surface segments, we decompose

the sampling space into k components by assigning each

Figure 3: Decomposing the sample points according to the parameter-

ization charts in the texture atlas, where the points in each decomposi-

tion component (right) are plotted in the color of their corresponding

parameterization chart (left).

sample point to its nearest surface segment. Figure 3 il-

lustrates a set of points sampled via importance sam-

pling around an object, with the component label —

shown as the color corresponding to the parameteriza-

tion chart — associated with each sample point.

3.2. Designing neural implicit representations

Our neural implicit representation of the surface pa-

rameterization is a simple feed-forward MLP that takes

3D locations as input and outputs UV coordinates, com-

posed of only fully-connected (FC) layers. We first de-

scribe the parameters of the MLP layers and then detail

the overall network architecture.

Pre-processing and layer implementation. To improve

the reconstruction quality of the MLP, we pre-process

the input layer of the network with a Fourier positional

encoding [5, 12] and implement the hidden layers as si-

nusoidal representation network (SIREN) layers [11].

Specifically, the value p on each coordinate position

of the input is encoded as an array of Fourier features

using the following function [5]:

γ(p) =
(

sin(20πp), cos(20πp), . . . ,

sin(2L−1πp), cos(2L−1πp)
)

,
(8)

where L defines the number of Fourier series terms; we

use L = 5 in our implementation.

Our FC layers additionally differ from standard FC

layers as we rely on sinusoidal representations [11]. To

implement a SIREN layer, we initialize the weight ma-

trix W and the bias vector b using a He uniform initial-

izer [41], before activating the layer using a sine func-

tion, as:

φ(x) = sin (ω0Wx + b) , (9)

where x refers to the layer’s input tensor and ω0 scales

the angular frequencies. We use ω0 = 1.
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Figure 4: The network architecture of the proposed model.

Network architecture. We design a two-stage network

architecture that handles both component predictions

and UV coordinate predictions at the same time; see

Figure 4 for the designed architecture of our model. We

use one MLP network, termed point2component, to

predict the component label to which the input point be-

longs, and another MLP network, termed point2UV,

to predict the UV coordinate associated with the in-

put point. Both point2component and point2UV are

composed of N feed-forward FC layers with each hav-

ing H hidden units. We set N = 8 and H = 64 in our

implementation, which we found to provide a balanced

trade-off between model complexity and prediction er-

ror, as per our ablation study.

The first stage, point2component, takes a 3D point

coordinate as input and outputs a k-sized vector where

each entry corresponds to the probability the current

point belongs to a particular component. We then con-

vert this to an integer c that represents the predicted

component label corresponding to the highest proba-

bility component. Then, we concatenate the compo-

nent prediction c with the point coordinate and use the

concatenated vector as the input to point2UV, which

outputs UV coordinate predictions. During training,

point2component and point2UV are being updated in

parallel separately. Once the two neural networks are

trained, we use the entire concatenated architecture for

predicting the surface parameterization.

Since point2component performs classification, its

last layer uses a softmax activation and our training ob-

jective minimizes cross-entropy loss. The last layer of

point2UV uses a sigmoid activation unit and the objec-

tive of point2UV is to minimize the MAE between real

and predicted UV coordinates.

4. Results

We detail our experimental methodology before pre-

senting various texture mapped results and a simple

editing scenario. We conclude by discussing how the

model is compressed. Our implementation details can

be found in our code1.

4.1. Experimental setup

We train our model to represent the surface parame-

terization of objects. To represent objects’ geometry, we

train for each object a model by Davies et al. [3], which

we call OverfitSDF for brevity. OverfitSDF also uses 8

hidden layers with 64 units per layer. Here we describe

the setup for training the neural implicit representations.

Experimental data. We use 16 3D objects from Tur-

boSquid2 to train our model. Every object is represented

as a triangle mesh in the Wavefront .obj format and

each has auxiliary appearance image texture file(s). We

normalize object sizes to a unit bounding sphere prior

to training. For each object, we generate our training

data by sampling 106 points in the unit sphere using the

importance sampling scheme, and we split these sam-

ples into training batches of 2048 points each. For test

and validation, we generate another set of 106 uniformly

sampled points on the object’s surface.

Optimizer and hyper-parameters. We train all the neu-

ral networks using the Adam optimizer [42]. For

point2component and point2UV, we set the learning

rate to 5 × 10−4. For OverfitSDF, the learning rate is

10−4. We train the models until convergence for 2000

epochs.

Visualization. We use the sphere tracing algorithm [4]

to visualize our objects, where we march along cam-

era rays by the distance to the object surface at each

step location, until the current distance to the surface is

smaller than a user-definable threshold ǫ; our results use

ǫ = 10−4.

Machine configuration and timing. We trained our neu-

ral networks on an NVIDIA GeForce RTX 2070 SU-

PER GPU with 8 GB of memory and CUDA version

10.1. Training our model requires an average of 1.1 h

per object, roughly twice the time needed to train the

geometry-only OverfitSDF model. Given 104 query po-

sitions, OverfitSDF takes 0.3 s to predict the signed dis-

tances and our model takes 0.6 s to predict the UV coor-

dinates.

1https://github.com/IsaacGuan/NISP
2https://www.turbosquid.com/
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(a) OverfitColor

(b) Ours

(c) GT

Figure 5: The diffuse color of the surface sample points, with zoom-in views shown on the right of each example. Our method can preserve more

high frequency details in the diffuse mapping results, compared to learning the surface color directly as a continuous function.

4.2. Texture mapping and editing

We demonstrate three proof-of-concept applications

facilitated by the surface parameterization learned us-

ing our method: diffuse texture mapping, normal tex-

ture mapping, and (post-training) texture editing. We

also quantitatively evaluate the distortion of our learned

parameterizations and compare the texture mapping re-

sults by our method to the synthesized views by the

state-of-the-art neural appearance models.

Diffuse mapping. To benchmark the utility and fidelity

of diffuse texture mapping using our neural surface pa-

rameterization, we train an OverfitSDF-style baseline

model to represent the surface color of objects as a con-

tinuous function in the 3D space — i.e., directly map-

ping 3D locations to RGB colors using an MLP net-

work. We call this baseline model OverfitColor, and

configure and train this model similarly as described

before, including pre-processing the input with Fourier

positional encoding. As shown in Figure 5, we com-

pare the color on the surface sample points generated by

diffuse mapping using our model (Figure 5b) to those

learned by OverfitColor (Figure 5a) and to the ground

truth (GT) color (Figure 5c). We clearly observe that our

results more faithfully preserve the all-frequency texture

detail, such as the lettering on the building’s shop sign.

To illustrate the advantages of conditioning the in-

put of neural networks with spatial decomposition when

learning surface parameterization signals, we train a

point2UV network without the conditioned inputs pro-

vided by point2component, i.e., mapping 3D loca-

tions directly to UV coordinates. Figure 6 compares the

UV coordinates predicted by point2UV with and with-

out conditioned inputs, and we observe — from the scat-

ter charts of the UV coordinates — that, without input

conditions, point2UV fails to provide accurate predic-

tions in regions close to the boundary of each parameter-

ization chart. This results in visual artifacts during, e.g.,

diffuse texture mapping, such as distortions on the boat

and the anomalies on the characters’ hands (Figure 6a).

With conditioned inputs, however, these distortions are

largely mitigated (Figure 6b), resulting in almost identi-

cal diffuse mapping results compared to the GT param-

eterization.

Normal mapping. The surface parameterization our

model learns also allows users to easily apply normal

maps to object surfaces implicitly defined by the SDF,

adding more visual details to the surface that a neural

implicit surface cannot capture. Figure 7 illustrates our

rendered results using normal mapping on neural im-

plicit surfaces: here, we can easily add geometric de-

tail, such as the barrel’s wood grain and the house’s

brick wall patterns (Figure 7b), using content creation

paradigms familiar to digital artists.

Texture editing. As our model learns directly from the

original texture space, users can easily edit original tex-
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(a) point2UV

(b) Ours (point2component + point2UV)

(c) GT

Figure 6: The UV coordinates of the surface sample points, plotted as scatter charts, with the corresponding diffuse mapping results along with the

zoom-in views shown on the bottom of each example. With conditioned input to point2UV, the noisy results in the UV predictions can be largely

mitigated, resulting in almost identical diffuse mapping results to the GT.

ture images to change the appearance of the neural im-

plicit surface after it has been trained. Figure 8 demon-

strates examples of editing the diffuse maps applied to

our neural implicit surfaces, where we apply a photo

filter to the texture image of the watermelon and paint

letters on the roof of the van.

Distortion metric. We quantitatively evaluate the dis-

tortion of the learned parameterizations according to the

metric described by Sorkine et al. [43]. Given the affine

mapping between the original triangle mesh and its cor-

responding parameterization, the distortion δ caused to

each triangle is measured using the largest and smallest

singular values σmax and σmin of the Jacobian matrix of

this transformation, written as:

δ = max

(

σmax,
1

σmin

)

. (10)

We feed the vertices of objects’ triangle meshes

into the neural networks to generate the parameterized

meshes. For each parameterization, we compute the

mean value δmean, the maximum value δmax, and the

standard deviation δstd of the distortions caused to all

triangles in the mesh. Table 1 demonstrates this quan-

titative evaluation for the learned and GT parameteriza-

tions in Figure 6. We see how much the distortion is
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(a) Without normal mapping

(b) With normal mapping

Figure 7: Application of normal maps to neural implicit surfaces.

(a) Original diffuse maps (b) Edited diffuse maps

Figure 8: Editing the diffuse maps applied to neural implicit surfaces,

with the rendered results shown on the right side of each diffuse map.

improved using conditioned input of our model.

Model comparison. We compare our texture mapping

results to the synthesized views by two different neu-

ral appearance models, namely, the scene representation

network (SRN) [16] and NeRF [5]. Figure 9 illustrates

this comparison. We further compute the mean squared

error (MSE), peak signal-to-noise ratio (PSNR), and

structural similarity index (SSIM) between GT and the

synthesized views as well as our rendered results, as

summarized in Table 2. We can see that our method out-

performs these neural appearance models in preserving

high frequency geometry and appearance details. Both

SRN and NeRF require a higher GPU memory usage,

as compared to our method. Using our experimental

device (a GPU with 8 GB of memory) and to train the

Table 1: Average δmean, δmax, and δstd of the learned and GT parame-

terizations in Figure 6.

δmean δmax δstd

point2UV 13.63 6.80 × 104 284.89

Ours 9.60 9.96 × 103 60.13

GT 3.58 6.14 × 103 17.84

(a) SRN (b) NeRF (c) Ours (d) GT

Figure 9: Comparison between the texture mapping results by our

method and the synthesized views by neural appearance models.

Table 2: Average MSE, PSNR, and SSIM of the synthesized views

and our rendered results in Figure 9.

MSE PSNR SSIM

SRN 40.10 32.18 0.947

NeRF 17.95 35.63 0.976

Ours 2.95 43.85 0.996

models at a reasonable speed, we have to reduce the

training views to a lower resolution (e.g., 128 × 128).

We train both models until convergence for 200 000

epochs, taking around 8 h for SRN and 4 h for NeRF.

However, our method incurs substantially smaller GPU

memory and computational cost, with a quicker training

time. With the auxiliary texture maps, we can render

our texture mapping results using traditional rendering

pipelines at arbitrary high resolutions (e.g., 1024×1024

or higher).

4.3. Model compression

We can also interpret our model along with Over-

fitSDF as a compression strategy for large 3D objects

represented as meshes. The average size of the .obj

files of the 16 experimental objects is 13.4 MB, while

the network weights of our model require 332 kB per

object and the weights of OverfitSDF require 155 kB

per object, which total to 487 kB for the entire geom-

etry and surface parameterization representation. This
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Figure 10: Test results when pruning the model using different strate-

gies, with the x-axes presenting the pruning rates (in percentage) and

y-axes being the test accuracy of point2component (left) and the

test MAE of point2UV (right).

0 % 36.9 % 64.4 % 84.4 % 95.7 % 99.4 %

(a) Pruning point2component only

0 % 36.9 % 64.4 % 84.4 % 95.7 % 99.4 %

(b) Pruning point2UV only

Figure 11: The predicted UV coordinates (shown as scatter charts)

of the Mario object by our model with point2component and

point2UV pruned at different rates (shown in percentage below each

scatter chart) using the smallest strategy.

already yields a compression rate of 1 : 27, but can

be further compressed by applying the lottery ticket

method [38], i.e., by seeking out sparse trainable sub-

networks — called winning tickets — from the origi-

nally trained neural model. These (much more compact)

subnetworks reach the same test accuracy as the original

network.

Following the lottery ticket training methodol-

ogy [38], we identify winning tickets iteratively, i.e.,

in each training epoch, pruning and freezing q
1
t % of

the weights that survive the previous epoch from the

original model (trained for t epochs), to obtain a final

pruning rate of q %. We use three strategies to decide

the weights to be pruned or kept: (i) prune the smallest

magnitude weights at each prunable layer; (ii) prune the

smallest weights across all prunable layers; (iii) keep

the weights that have the largest magnitude from a pre–

trained model [44]. We refer to these three strategies as

smallest, smallest_global, and large_final.

We demonstrate the results of these pruning strate-

gies on the Mario object, where point2component

and point2UV have 43 454 and 31 874 trainable

Table 3: Size comparison between the weights, saved in .npz format

and measured in kilobytes, of the unpruned model and the pruned

model compressed using different coding formats of sparse matrices.

Unpruned COO CSC CSR DIA

point2component 174.4 54.9 54.5 55.0 58.5

point2UV 129.1 71.3 71.4 71.4 73.4

Total 303.5 126.2 125.9 126.4 131.9

weights, respectively. We use 10 pruning rates rang-

ing from 20 % to 99 % and use the test accuracy and

MAE as evaluation metrics for point2component and

point2UV. Figure 10 summarizes our findings: for

point2component, the test accuracy does not drop

significantly until a pruning rate of 84.4 %, and for

point2UV, the test MAE stays around 5 × 10−4 un-

til a pruning rate of 64.4 %, using the pruning strat-

egy smallest. Figure 11 visualizes the UV predic-

tions made by the pruned networks as scatter charts,

where we see the predictions will not distort remarkably

until pruning point2component at 84.4 % or pruning

point2component at 64.4 %.

We can save the weights of the pruned networks as

sparse matrices, as pruned weights are set to zero. Ta-

ble 3 compares the sizes of the weights of the un-

pruned and pruned models, where point2component

is pruned at 84.4 % and point2UV is pruned at 64.4 %

using the smallest strategy. The pruned model is com-

pressed using different coding formats of sparse matri-

ces, namely, the coordinate format (COO), the com-

pressed sparse column format (CSC), the compressed

sparse row format (CSR), and the diagonal storage for-

mat (DIA). We observe that our model can be further

reduced from 303.5 kB to roughly 126 kB.

5. Conclusion

We proposed to learn neural representations of both

an object’s 3D surface and a surface parameteriza-

tion suitable for auxiliary appearance data. Follow-

ing recent works on overfitted networks, we learn com-

plex multi-chart signal parameterizations as a weight-

encoded neural representation. We rely on a novel

two-stage network architecture to allow us to capture

fine-scale texture domain resolution while respecting

the discontinuities in texture atlases. Our model aug-

ments existing (neural) implicit surface representations

with the benefits of auxiliary texture mapping and edit-

ing common to standard 3D digital content creation

pipelines. We demonstrated the applicability of our

model to appearance-aware neural implicit surface rep-

resentations, building atop the work of Davies et al. [3].
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