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How to texture a neural implicit surface?
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Related work

Neural implicit surface [1] Neural implicit appearance [2]
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Problem statement

• The neural implicit representations of object surfaces focus only on recovering 
the geometric details, instead of other appearance properties.

• The neural implicit appearance models tend to learn appearance properties that 
are entangled with the surface geometry, making it difficult to decouple the 
auxiliary appearance data from its underlying geometry, e.g., for texture editing.
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Problem statement

• Therefore, inspired by traditional explicit 3D object representations, i.e., meshes, 
we rely on surface parameterizations [3] to handle auxiliary appearance data.

Traditional 3D digital content: a mesh, a texture image, and a UV map (i.e., the parameterization)
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Overview

Implicit surface

Implicit parameterization +
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Importance sampling

• The signed distance function (SDF) describing an object’s surface is SDF 𝐩 = 𝑑, 
where 𝐩 ∈ ℝ3 and 𝑑 ∈ ℝ, and a neural network 𝑓𝜃 approximates the SDF, i.e., 
𝑓𝜃(𝐩) ≈ SDF(𝐩).

• We assign higher weights to locations closer to the implicit defined surface, using 
the following metric:

𝑤 𝐩 = 𝑒−𝛽 SDF(𝐩) ,

where we use 𝛽 = 60.

• We apply a Monte Carlo approximation to down-sample a set 𝑆 of 𝑛 points from 
a set of 𝑚 uniformly sampled points 𝑈, such that:

1

𝑛
σ𝑝∈𝑆 SDF 𝐩 − 𝑓𝜃(𝐩) ≈

1

𝑚
σ𝑝∈𝑈 SDF 𝐩 − 𝑓𝜃 𝐩 𝑤(𝐩).
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Decomposing the sampling space

• Object textures typically comprise a discontinuous collection of piecewise smooth 
parameterization charts, known as a texture atlas [3]. We observe that the 
discontinuities and the piecewise nature of these charts complicate learning, as 
neural networks tend to learn smoothed boundaries.

GT parameterization charts Learned parameterization charts
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Decomposing the sampling space

• Conditioned inputs help models learn complex structured representations [4].

• We assign a unique discrete label to each region of the parameterization charts 
and condition the input to our model on this decomposition signal.

Assign each sample point a label (right) of its nearest surface segment in the parameterization charts (left)
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Pre-processing and layer implementation

• We pre-process the input with Fourier positional encoding. Each value 𝑝 in the 
coordinate position is encoded as:

𝛾 𝑝 = sin 20𝜋𝑝 , cos 20𝜋𝑝 ,… , sin 2𝐿−1𝜋𝑝 , cos 2𝐿−1𝜋𝑝 ,

where we use 𝐿 = 10.

• We use sinusoidal representation network (SIREN) layers to implement the fully-
connected (FC) layers of our model.
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Network architecture
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Experimental setup

• We use the model of Davies et al. [5] (OverfitSDF) to represent objects’ geometry.

• We use 8 × 64 FC layers to implement the models.

• Each object is sampled with 106 points for training and our models are trained 
until convergence for 2000 epochs, using the Adam optimizer with a learning rate 
of 5 × 10−4. 

• A sphere tracer is used for visualization.

• The networks are trained on an NVIDIA GeForce RTX 2070 SUPER GPU with 8 GB 
of memory.
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Diffuse mapping

OverfitColor Ours GT
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Normal mapping

Without normal mapping (OverfitSDF only) With normal mapping
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Texture editing

Original diffuse maps Edited diffuse maps
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Comparison to neural appearance models

SRN [6] NeRF [2] Ours GT
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Model compression

• We interpret our model along with OverfitSDF as a compression strategy for large 
3D objects represented as meshes. The average size of the OBJ files used in our 
experiments is 13.4 MB, while the weights of the networks representing the 
geometry and surface parameterization total to 487 kB on average, yielding a 
compression rate of 1: 27.

• We can apply a pruning algorithm to our model, e.g., using the lottery ticket 
method [7], which further removes 60~80% of the weights from our model.
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Conclusion

• We propose to learn neural representations of both an object’s 3D surface and a 
surface parameterization.

• The proposed neural representation extends the capability of (neural) implicit 
surfaces to enable various applications of texture mapping similar to standard 3D 
digital content creation pipelines.

• We overfit compact neural networks to single objects as their efficient weight-
encoded representations, the networks can be further compressed through a 
pruning algorithm.
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Thank you for your attention!
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