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Deep Generative Models for 3D Shapes

Volumetric VAE [BLRW16]

                       

        

         
         

            
           

Volumetric GAN [WZX*16]

Point cloud AE [ADMG18] Implicit decoder [CZ19]

DeepSDF [PFS*19]



Controlling Shape Generation

“Snapping” mechanism [LYF17]

Sketch-based modeling [SBS19]ShapeGlot [AFH*19]

Text2Shape [CCS*18]



Our Method

• Facilitates the exploration of the learned shape spaces through keywords

• Maps the keywords to distributions of the latent dimensions

“straight square back”

“four straight short legs”



Method Overview
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Shape Encoder Network (SEN)
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Architecture of 3D-GAE [GJvK20]
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Decodes latent vectors into shapes

Shape Decoder Network (SDN)

Architecture of the implicit decoder [CZ19]
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Maps keywords to the regions of the latent space

Label Regression Network (LRN)
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So, the final loss of LRN is

ℒLRN = − log 𝑃 𝑧𝑖|𝐥 . Architecture of LRN



Datasets: Shapes and Labels

one two three four five short long straight roller beam box

number length type

leg



Results

Back: size --- full
 side view --- straight
Seat: shape --- square
Leg: number --- four
 length --- short
 type --- straight

Gaussian 1
𝛼1 = 0.52

Gaussian 2
𝛼2 = 0.22

Gaussian 3
𝛼3 = 0.18

Gaussian 4
𝛼4 = 0.04

Gaussian 5
𝛼5 = 0.04



Results

Back: size --- full
 side view --- straight
Seat: shape --- square
Leg: number --- four
 length --- short
 type --- straight



Results

Back: size --- full
 fill --- vertical ladder
 fill --- hole(s)
 side view --- bent
 front view --- square
Seat: shape --- circular
Leg: length --- short



Results

Shade: front view --- bell
 fitting --- empty
Body: type --- pipe
Base: connection --- untangled



Results

Top: type --- single
 shape --- round
Leg: length --- medium



Perturbation of Latent Vectors

𝛇 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.8



Comparison to the PCA-Based Exploration

𝜇 𝜇 + 0.67𝜎 𝜇 + 1.33𝜎 𝜇 + 2𝜎𝜇 − 0.67𝜎𝜇 − 1.33𝜎𝜇 − 2𝜎



Comparison to Text2Shape

Back: size --- full
 front view --- square
Seat: shape --- square

A chair with a high back
and a square shape

Top: shape --- rectangular
Leg: number --- four
Side: connection --- closed

A rectangular table with
four linked legs



Conclusion

• Mapping of semantic labels to distributions in the latent space enables users to 
explore subspaces of shapes constrained by the labels

• The user can generate a variety of shapes with the specified attributes

• Solution combines:
• Label regression network that learns distributions of latent vectors conditioned on the labels

• Generative network which translates sampled latent vectors into 3D shapes



Limitations

• Our method requires labeled datasets

• Thus, our current datasets are small

• Exploration requires an experimental threshold to select relevant dimensions to 
inspect



Future Work

• Crowdsourcing could provide labeling for more and larger datasets

• Could explore the mapping of labels to other types of distributions in the latent 
space

• Could combine keyword guidance with PCA-based exploration and “snapping” 
latent vectors to the manifold
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Thank you!



Appendix A: Comparison to the PCA-Based Exploration

Chairs:

𝜇 𝜇 + 0.67𝜎 𝜇 + 1.33𝜎 𝜇 + 2𝜎𝜇 − 0.67𝜎𝜇 − 1.33𝜎𝜇 − 2𝜎



Appendix A: Comparison to the PCA-Based Exploration

Lamps:

𝜇 𝜇 + 0.67𝜎 𝜇 + 1.33𝜎 𝜇 + 2𝜎𝜇 − 0.67𝜎𝜇 − 1.33𝜎𝜇 − 2𝜎



Appendix A: Comparison to the PCA-Based Exploration

Tables:

𝜇 𝜇 + 0.67𝜎 𝜇 + 1.33𝜎 𝜇 + 2𝜎𝜇 − 0.67𝜎𝜇 − 1.33𝜎𝜇 − 2𝜎



Appendix B: Comparison to Text2Shape

Back: size --- full
 front view --- square
Seat: shape --- square

A chair with a high back
and a square shape



Appendix B: Comparison to Text2Shape

Top: shape --- rectangular
Leg: number --- four
Side: connection --- closed

A rectangular table with
four linked legs
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