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Deep Generative Models for 3D Shapes
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Volumetric VAE [BLRW16] Point cloud AE [ADMG18]
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Volumetric GAN [WZX*16] DeepSDF [PFS*19]



Controlling Shape Generation
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Our Method

 Facilitates the exploration of the learned shape spaces through keywords

* Maps the keywords to distributions of the latent dimensions

“straight square back”
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“four straight short legs”




Method Overview
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Shape Encoder Network (SEN)
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Shape Decoder Network (SDN)

Decodes latent vectors into shapes
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Label Regression Network (LRN)

Maps keywords to the regions of the latent space h
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Datasets: Shapes and Labels
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Results

Back: size --- full

side view --- straight
Seat: shape --- square
Leg: number --- four

length --- short
type --- straight

Gaussian 1
al = 0.52

Gaussian 2
a, = 0.22

Gaussian 3
az; = 0.18

Gaussian 4
a, = 0.04

Gaussian 5
as = 004




Results

Back: size --- full

side view --- straight
Seat: shape --- square
Leg: number --- four

length --- short
type --- straight
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Results

Back: size --- full
fill --- vertical ladder
fill --- hole(s)

side view --- bent

front view --- square
Seat: shape --- circular
Leg: length --- short




Results

Shade:

Body:
Base:

front view --- bell
fitting --- empty

type --- pipe
connection --- untangled




Results

Top: type --- single
shape --- round
Leg: length --- medium




Perturbation of Latent Vectors
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Comparison to the PCA-Based Exploration
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Comparison to Text2Shape

Back: SIZ€ “'_fU” A chair with a high back
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Conclusion

* Mapping of semantic labels to distributions in the latent space enables users to
explore subspaces of shapes constrained by the labels

* The user can generate a variety of shapes with the specified attributes

e Solution combines:
* Label regression network that learns distributions of latent vectors conditioned on the labels
* Generative network which translates sampled latent vectors into 3D shapes



Limitations

* Our method requires labeled datasets

* Thus, our current datasets are small

* Exploration requires an experimental threshold to select relevant dimensions to
inspect



Future Work

* Crowdsourcing could provide labeling for more and larger datasets

* Could explore the mapping of labels to other types of distributions in the latent
space

* Could combine keyword guidance with PCA-based exploration and “snapping”
latent vectors to the manifold
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Appendix A: Comparison to the PCA-Based Exploration
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Appendix A: Comparison to the PCA-Based Exploration

Tables:

~ T T T

u— 1330 u—0.670 U+ 0.670 U+ 1.330 U+ 20



Appendix B: Comparison to Text2Shape
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Back: size --- full
front view --- square
Seat: shape --- square

A chair with a high back
and a square shape



Appendix B: Comparison to Text2Shape

Top: shape --- rectangular
Leg: number --- four
Side: connection --- closed

A rectangular table with
four linked legs
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