
STCP: Simple Transaction Commit Protocol for
Wireless Sensor Networks

Youqing Guan∗, Ke Zhang† and Yanran Guan‡
∗School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Email: guanyouq@njupt.edu.cn
†ZTE Corporation, Nanjing 210012, China

Email: zhang.ke106@zte.com.cn
‡School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

Email: yanranguan@cmail.carleton.ca

Abstract—To effectively ensure data consistency is a challenge
in today’s wireless sensor network (WSN) applications. This
paper, based on the simplification of traditional transaction pro-
cessing from database management system (DBMS), puts forward
the concepts of update transaction and query transaction within
the context of WSNs and proposes a novel transaction processing
protocol, the simple transaction commit protocol (STCP), for
WSN systems. In STCP, the base station, as coordinator, is
responsible for initializing a transaction and broadcasting the
transaction to participant nodes. The participants, on the other
hand, commit the transaction according to a timer, which enables
the participants to send acknowledgment or conflict messages
to the base station at a regular time interval. The transac-
tions suspended by conflict are awakened through a triggering
mechanism. Compared to the traditional protocols of distributed
systems, STCP, which adapts better to the characteristics and
requirements of WSNs, can effectively and efficiently ensure data
consistency in WSN systems.

Index Terms—Data consistency, STCP, transaction processing,
WSN.

I. INTRODUCTION

Wireless sensor network (WSN) is a distributed system
consisting of one base station and multiple participant nodes
that have limited energy and computational resources. It can
also be viewed as a distributed database that collects, stores,
and indexes the sensor data to respond to the queries received
from external users/applications as well as internal system
entities. Nowadays, data management in WSNs has become an
area that draws increasing attention. Many new technologies
have been developed for WSN data management, e.g., contin-
uous queries [1] and data stream processing [2], approximate
query answering [3], in-network data aggregation [4], and
data fusion [5], as well as query processing systems such as
Cougar [6], TinyDB [7], Corona [8], and RTQPS [9].

Meanwhile, research regarding WSN transaction manage-
ment is still rarely seen. There are two main reasons for it:
firstly, the sensor nodes with limited resources are difficult
to be made compatible with a complex protocol that ensures
reliable data processing; secondly, the traditional WSN sys-
tems are mainly designed for read-only data queries that do

This work was supported by the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China (Grant No. 05KJD520146).

not take data update into consideration, so that there is no
need for an explicit control on data consistency. However, with
the growing diversity and complexity of WSN applications,
the precise control of ensuring the consistency of the sensor
data becomes particularly important on many occasions. For
instance, in the process of updating the sensor sampling rate
for a certain factory workshop, an unsuccessful update for
a few sensors will bring about inconsistency in sampling
frequency in the subsequent data sampling, which will lead
further to statistical errors in the results being sent to the
base station. In another case, assuming that the WSN is doing
continuous queries to calculate the average temperature inside
a warehouse when an update operation is called that modifies
the unit of temperature from Fahrenheit to Celsius, the results
of the continuous queries will then be incorrect due to the
changes in the unit of measurement.

The existing atomic commit protocols of distributed sys-
tems, such as the two-phase commit (2PC) protocol, cannot
address these issues perfectly. Considering the limited node
energy and the usually occurring node failure or communica-
tion failure in WSNs, such complicated protocols can easily
cause system blocking or data inconsistency. Therefore, some
transactional solutions with WSN characteristics have been
proposed. The earliest idea of incorporating the transactional
properties of atomicity, consistency, isolation, and durability
(ACID) from database management system (DBMS) into
WSN management was proposed by Gürgen et al. [10]. Reinke
et al. [11] suggest ensuring the atomic property of service
migration operations in service-oriented architecture (SOA)
based WSN systems [12], which helps to extend the life
cycle of WSNs. Based on the same idea, the cross-layer
commit protocol (CLCP) [13] and the 2PC with caching
(2PCwC) protocol [14], [15] were developed. Besides, with
the development of blockchain technology, some recent studies
proposed from the perspective of blockchain transactions [16],
[17] can also be applied in WSNs.

Based on simplified DBMS transactions, we propose a
completely defined transaction processing protocol for WSNs,
the simple transaction commit protocol (STCP), that works for
all transactional situations in WSN systems. Compared to the
aforementioned transactional models, STCP has the following



characteristics:
• The transactions are committed periodically based on a

timer, making it possible to coordinate transactions and
to have time to handle the cancel operations.

• Each participant responds to the coordinator at a regular
time interval defined by the timer, reducing not only
conflicts within the network but also the retransmission
of messages.

• Transactional conflicts are handled in an optimistic lock-
ing manner, and a triggering mechanism is used for
automatically waking up transactions that are suspended
by conflicts.

II. WSN TRANSACTION PROCESSING MODEL

In this section, we introduce the transaction processing
model of STCP, including the definition of WSN transaction,
the atomic transaction processing algorithm, and the concur-
rency controller. All the SQL statements that occur in this
section are written in TinyDB’s SQL-like language.

A. WSN Transaction

In STCP, based on the simplification of traditional DBMS
transactions, we define the update and query operations in
WSN systems as WSN transactions. Detailed definitions are
given below.

Definition 1. An update transaction in WSNs, or a WSN
update, consists in modifying the metadata information (such
as identifier, location, sampling rate, and sampling unit) of
sensor nodes.

Owing to the distributed architecture of WSNs, data incon-
sistency is likely to happen when the base station modifies the
information of participant nodes. We propose the concept of
WSN update. For example, a WSN update can be written in
the following SQL statement that raises the sampling rate by
two times of the temperature sensors located at department A.
UPDATE sensor_attr

SET sampling_rate = sampling_rate * 2
WHERE location = 'A' AND type = 'temperature'

Definition 2. A query transaction in WSNs, or a WSN query,
refers to the set of continuous queries for the streaming data
from sensor nodes.

In order to facilitate the handling of concurrency conflicts
between updates and queries in WSN systems, we define WSN
query as the set of statistically continuous queries for the
data on sensor nodes over a period of time. For example, the
following SQL code describes a WSN query that queries every
20 s in 5min the average temperature from the temperature
sensors of department A.
SELECT avg(temp)

FROM sensors
WHERE location = 'A' PERIOD 20s FOR 300s

WSN transactions are derived from DBMS transactions,
having the commit and rollback operations as well. Yet as a
simplified traditional transaction, a WSN update modifies only

one type of metadata information each time, and a WSN query
is a consolidation of continuous traditional one-time queries.

B. Atomic Transaction Processing

As mentioned in Section I, the traditional atomic commit
protocols, e.g., 2PC, are not suitable for WSN systems. The
variants of traditional protocols, e.g., CLCP and 2PCwC, work
under the circumstances where only a part of the participants
is included, such as service migration. Therefore, we propose
a new atomic commit protocol based on WSN transactions.
The formal description of a WSN transaction is given in
Definition 3 below.

Definition 3. A WSN transaction is denoted by a three-
tuple, written as WSNT(TID,TCTX,P), where TID refers
to the numeric identifier of the transaction, TCTX refers to
the context of the transaction, and P refers to the collection
of all participants.

In Definition 3, TID is a randomly generated integer that
identifies the transaction initiated by the base station, such as
35306. P is the set of all participant nodes relevant to the WSN
transaction, such as {node1,node2,node3, . . . }.

To describe the transaction context TCTX in
Definition 3, we use another three-tuple, written as
TCTX(TType,TOperation,TTimeInterval), where
TType refers to the type of transaction, i.e., the WSN
update WSN_UPDATE or the WSN query WSN_QUERY,
TOperation describes the detailed operation that the
transaction carries out, and TTimeInterval denotes the
time interval in which feedback messages should be sent
from the participant nodes to the base station.

The TCTX of a WSN update is written in SQL below.
TCTX(

/* transaction type */
WSN_UPDATE,
/* transaction operation */
UPDATE sensor_attr

SET sampling_rate = sampling_rate * 2
WHERE location = 'A' AND type = 'temperature',
/* time interval (in milliseconds) */
1650

)

The atomic commit protocol of STCP comprises the coor-
dinator part and the participant part. In our design, the state
transitions on the coordinator side and the participant side are
shown in Fig. 1.

The base station, being the coordinator, as shown in Fig. 1a,
starts a transaction from the initial state, where the transaction
is initialized and the timer of coordinator TC is set up. The co-
ordinator then broadcasts the TCTX to all relevant participants,
triggering the transition to the collecting state, and starts to
collect the messages which are sent by the participants through
a retransmission mechanism, where the participants have to
resend the message if the coordinator fails to receive it. At the
collecting state, as soon as the conflict message CONFLICT
is received, the coordinator will abort the transaction: stop
TC, broadcast the cancellation message CANCEL, and make
a state transition to canceled. If the coordinator receives ACK



Send: TCTX

TC
Receive: CONFLICT

Send: CANCEL

initial

collecting

committed canceled

Receive: ACK

(a)

initial

committing canceling

committed canceled

Receive: CANCEL

Send: CONFLICTSend: ACK

TPTP

Receive: TCTX

Receive: CANCEL

(b)

Fig. 1. The state machines of the coordinator and the participant, where a solid
line arrow indicates a state transition triggered by a message, a dashed line
arrow indicates a state transition triggered by the timer. (a) The state machine
of the coordinator, which comprises: four kinds of states: the initial state, the
collecting state, the committed state, the canceled state; four kinds of messages
being sent or received: the transaction context TCTX, the acknowledgment
message ACK, the conflict message CONFLICT, the cancellation message
CANCEL; the timer of coordinator TC. (b) The state machine of the participant,
which comprises: five kinds of states: the initial state, the committing state, the
canceling state, the committed state, the canceled state; four kinds of messages
being sent or received: the transaction context TCTX, the acknowledgment
message ACK, the conflict message CONFLICT, the cancellation message
CANCEL; the timer of participant TP.

messages from the participants, the state will not be moved
immediately to committed and be maintained in collecting
until TC is triggered. During the waiting time defined by TC,
the coordinator collects the messages from the participants.
As soon as TC is triggered, whether or not all ACK messages
from the participants are received, the state of the coordinator
will change into the committed state.

As shown in Fig. 1b, once the TCTX from the coordinator
has been received, a sensor node, being the participant, will
start its state machine from the initial state, where the timer of
participant TP is initialized. If no transactional conflict exists
at the participant after receiving TCTX, an acknowledgment
message ACK will be sent to the coordinator, and the transition
to the committing state will be triggered. If there exists a
conflict, the participant will then send a CONFLICT message
to the coordinator and change the state to canceling. The
participant then waits until TP is triggered and makes a
state transition correspondingly either from committing to
committed, or from canceling to canceled. If any CANCEL
message broadcast by the coordinator is received during this
wait, the transition to the canceling state will be automatically
triggered.

We use the following algorithms to implement the state
machines of the coordinator and the participant. The trans-
action commit process on the coordinator side is shown in
Algorithm 1, and that on the participant side is shown in
Algorithm 2.

Theorem 1. The transaction commit process described by Al-
gorithm 1 and Algorithm 2 ensures transactional consistency.

Proof. According to the state machines of the coordi-
nator and the participant, the state set of the coor-
dinator is {initial , collecting , committed , canceled}, while
{initial , committing , canceling , committed , canceled} is the

Algorithm 1 Transaction commit process of coordinator
1: begin transaction
2: Initialize WSNT(TID,TCTX,P) . the initial state
3: Start TC
4: Broadcast TCTX to P
5: Collect messages from P . the collecting state
6: if message CONFLICT received then
7: Broadcast CANCEL to P
8: Close TC
9: Abort transaction . the canceled state

10: else
11: Wait till TC triggered
12: if TC triggered then
13: Commit transaction . the committed state
14: end if
15: end if
16: end transaction

Algorithm 2 Transaction commit process of participant
1: begin transaction
2: Receive TCTX from coordinator
3: Start TP . the initial state
4: if no conflict exists then
5: Send ACK to coordinator
6: Wait till TP triggered . the committing state
7: if CANCEL received then
8: if TP triggered then . the canceling state
9: Abort transaction . the canceled state

10: end if
11: else
12: if TP triggered then
13: Commit transaction . the committed state
14: end if
15: end if
16: else
17: Send CONFLICT to coordinator
18: Wait till TP triggered . the canceling state
19: if TP triggered then
20: Abort transaction . the canceled state
21: end if
22: end if
23: end transaction

state set of the participant. Similar to the idea of use case
sequencing proposed by Briand and Labiche [18], all the
possible state transition sequences can be written as follows.

The state transition sequences of the coordinator are:{
S1
c = initial · collecting∗ · committed ,

S2
c = initial · collecting∗ · canceled .

(1)

The state transition sequences of the participant are:
S1
p = initial · committing · committed ,

S2
p = initial · committing · canceling∗ · canceled ,

S3
p = initial · canceling∗ · canceled .

(2)



In (1) and (2) above, the dot operator “·” indicates a state
transition, e.g., initial · collecting means the transition from
the initial state to the collecting state. The star operator “∗”
indicates the self-transitions of a state, meaning a state being
repeated for finite times.

With the help of (1) and (2), we are able to list all the
possible pairs of the state transition sequences that will happen
on the coordinator side and the participant side in the form of
two-tuples: (S1

c , S
1
p), (S

1
c , S

2
p), (S

1
c , S

3
p), (S

2
c , S

1
p), (S

2
c , S

2
p),

and (S2
c , S

3
p).

Among all those six pairs of state transition sequences,
some can be proven invalid based on the message triggering
mechanism implied in the state machines. Here we use an
elimination method to exclude all invalid sequence pairs.

The pair (S1
c , S

2
p) is invalid. The transition committing ·

canceling in S2
p is triggered by the cancellation message

CANCEL which is released if and only if collecting ·canceled is
made at the coordinator. This implicational relation is written
as:

committing · canceling → collecting · canceled . (3)

The state transition collecting · canceled does not appear in
S1
c , indicating the implication (3) to be false. Thus, (S1

c , S
2
p)

is invalid.
Similarly, the pair (S1

c , S
3
p) is invalid. The transition initial ·

canceling in S3
p is triggered by the cancellation message

CANCEL which is released if and only if collecting ·canceled is
made at the coordinator. This implicational relation is written
as:

initial · canceling → collecting · canceled . (4)

The state transition collecting · canceled does not appear in
S1
c , indicating the implication (4) to be false. Thus, (S1

c , S
3
p)

is invalid.
Lastly, the pair (S2

c , S
1
p) is invalid. The state transition

collecting · canceled in S1
p releases the cancellation mes-

sage CANCEL that necessarily triggers either committing ·
canceling or canceling∗ at the participant. Otherwise, the tran-
sition committing · canceling or canceling∗ also implies the
necessity of collecting ·canceled to happen at the coordinator.
This biconditional relation is written as:

collecting · canceled ↔ (committing · canceling)
‖(canceling∗).

(5)

Neither committing · canceling nor canceling∗ appears in
S2
c , indicating the biconditional statement (5) to be false. Thus,

(S2
c , S

1
p) is invalid.

The remaining sequence pairs, namely, (S1
c , S

1
p), (S

2
c , S

2
p),

and (S2
c , S

3
p), are all valid, as no such contradictions are found

within them. In all these remaining sequence pairs, both the
coordinator and the participant come to the same state, either
being committed or being canceled, when the final state is
reached. Thus, the transaction commit process provided by
our algorithms is proven to be transactionally consistent.

The interval durations of TC and TP are set equally so
as to ensure that the participants are synchronized with the

coordinator. If a node failure occurs to a participant, which
makes the coordinator fail to receive any ACK or CONFLICT
message from this certain participant, such a malfunctioning
participant node will be immediately eliminated from the
current network because of the self-organizing property of
WSNs, and thus, data consistency of the transaction process
in the working network will not be affected.

C. Concurrency Control Strategy

There are two types of concurrency control strategies in
terms of transaction processing: the pessimistic concurrency
controller (PCC) and the optimistic concurrency controller
(OCC). PCC assumes the worst case to happen and prevents
it by locking the record as soon as the record is selected. PCC
releases the locked resources only after the whole transaction
has finished. OCC, on the contrary, locks the record only when
an update takes place. OCC divides an update transaction
into three phases: the reading phase where the transaction
is allowed to read the data to be updated and tentatively
calculate the updating result, the verification phase where any
conflict with other active transactions is being detected, and
the writing phase where the transaction is committed and
the update is carried out based on the pre-calculated result
at the reading phase. In WSN systems, locking every data
record and sending the locking request to each sensor node is
way too expensive to conduct and may also cause deadlocks.
Therefore, in our model, we design the concurrency controller
based on OCC, which not only has the characteristics of non-
blocking and deadlock-free but also computationally cheap for
low concurrency systems.

Because of the distributed architecture of WSNs, the concur-
rency controller of the base station and that of the sensor nodes
should be designed separately. In this section, we discuss the
concurrency control schemes on the base station side as well
as the sensor node side.

1) Concurrency Control on the Base Station Side: The
concurrency control scheme on the base station side is ex-
plained as follows from the perspectives of three different
types of conflicts, namely, the conflict between queries (read-
read conflict), the conflict between query and update (read-
write conflict), and the conflict between updates (write-write
conflict).

a) Read-read controller: Queries are compatible with
each other so they do not need to be isolated. However, due to
the conflict-prone environment of WSN systems, we suggest
coordinating each message being sent to the base station by
setting a timer at each sensor node, which makes the message
be sent at a regular time interval, so that the message conflict
and the packet loss rate can be reduced.

b) Read-write controller: Unlike a traditional query of
DBMS, a WSN query is continuous, which poses a higher
risk of read-write conflict. It is doable to use some priority-
based scheduling strategies [10] to deal with conflicts during
a continuous query. However, on account of the unstable
communication in WSNs, terminating a running transaction
according to priority is dangerous and may result in data



inconsistency. Therefore, in our model, it is prohibited for a
continuous query to terminate an executing update transaction.
We manage the read-write conflict through two queues, an
active queue for transactions being executed and a waiting
queue for transactions with conflict. If an update transaction
starts during a continuous query, a conflict detection will be
made to check whether or not the metadata that the update
modifies is related to the query. The update transaction will
be suspended and be put into the waiting queue if such conflict
is detected. And if not, the update transaction will be put
into the active queue and get executed. Otherwise, if a query
takes place during an update with no conflict, the query will
get executed right away. And if there is a conflict, the query
will be put into the waiting queue. All the transactions in the
waiting queue will be verified and pushed into the active queue
sequentially once the current running transaction is finished.

c) Write-write controller: Since most of the WSN ap-
plications are developed for querying sensor data, a WSN
does not usually have as many update transactions to deal
with as compared to query transactions. Besides, considering
the network failure and message loss that occasionally occur
in WSNs, our model employs a strict control on update
transactions at the verification phase on the coordinator side
by doing conflict detection only for one update each time. The
newly arrived update will be suspended in the waiting queue
described in the read-write controller until the current one is
committed.

2) Concurrency Control on the Sensor Node Side: Sensor
nodes, as low-end devices, are only responsible for receiving
queries and sending data, without complicated tasks to do
in WSNs. Hence, our model only deals with the write-write
conflict that could take place on the sensor node side.

a) Write-write controller: In WSNs, a sensor node is
allowed to change its metadata information by itself, e.g., the
node reduces its sampling rate by half in low power mode.
Such self-adjustment may conflict with a global WSN update
started by the coordinator. The write-write conflict at sensor
nodes is getting controlled in the following manner. If a sensor
node receives the transaction context TCTX of a global update
during self-adjustment, verification will be made to detect the
conflict between the self-adjustment and the global update
by checking whether or not they are modifying the same
metadata. The global update will be carried out as long as no
conflict is detected. If the conflict exists, this certain sensor
node will send a CONFLICT message to the coordinator,
triggering the coordinator to broadcast the CANCEL message
to all participants. The global update will then be canceled.

III. IMPLEMENTATION FRAMEWORK

Based on the atomic transaction process described in Sec-
tion II-B and the concurrency controllers described in Sec-
tion II-C, we design a whole transaction processing framework
for the implementation of STCP, which consists of five mod-
ules, the transaction manager, the concurrency controller, the
active queue, the waiting queue, and the transaction processing

Transaction manager

Concurrency controller Active queue

Waiting queue

Transaction processing

Initialized 
transaction

Transaction Transaction

Finished transaction

Check

Suspended 
transaction

Awakened 
transaction

Fig. 2. The transaction processing framework.

Start

Broadcast TCTX

Start TC

Collect messages

Receive CONFLICT?

Wait for TC event

Commit transaction

End

Broadcast CANCEL

Wait for TC event

Cancel transaction

Y

N

(a)

Start

Receive TCTX

Start TP

Detect conflict

Send ACK

Receive CANCEL?

Wait for TP event

Commit transaction

End

Send CONFLICT

Relay CANCEL to 
neighbors

Cancel transaction

Y

Y

N

N

Wait for TP event

(b)

Fig. 3. The transaction processing (a) on the coordinator side and (b) on the
participant side.

module. Fig. 2 gives an overview of the interactions between
the five modules.

The transaction manager, the core component of our frame-
work, is responsible for managing the life cycle of a transac-
tion which includes the initialization, the scheduling, and the
destruction of a transaction.

The concurrency controller is the implementation of a set
of concurrency processing interfaces based on the design in
Section II-C. Once a new WSN transaction is initialized, the
transaction manager will call the concurrency controller to
do conflict detection for it. The transaction with no detected
conflict will be put into the active queue and get executed
right away. The transaction with conflict will be suspended in
the waiting queue, waiting to be woken up by the transaction
manager.

The active queue and the waiting queue, as mentioned in
Section II-C1, are designed for concurrency management. The
active queue stores the active transactions, while the waiting
queue is responsible for storing the suspended transactions.

The transaction processing module comprises all trans-
actional processes that take place at the coordinator and
the participants after a transaction is getting verified by the
concurrency controller, as shown in Fig. 3a and Fig. 3b.
The implementation of this module is based on the design
of the atomic commit algorithm in Section II-B. Moreover,
in order to enhance the robustness of our implementation,
upon receiving the CANCEL message from the coordinator,



Application

Active message

Network interface

Transaction

Fig. 4. The software stack of the implementation of STCP.

each participant is forced to relay the CANCEL message to its
neighbors. As soon as a transaction is committed or canceled,
the transaction will be recollected by the transaction manager
and then be destroyed.

The finish of each transaction triggers the transaction
manager to check the waiting queue and wake up the first
transaction in it. The awakened transaction will be called by
the concurrency controller and get restarted from the conflict
verification phase.

IV. SIMULATION AND RESULTS

In this section, we briefly describe the setup of the simu-
lation experiment and the experimental results of the imple-
mentation of STCP.

A. Experimental Environment

We implement STCP according to the framework as ex-
plained in Section III using the nesC language and test our
implementation using the TOSSIM simulator in TinyOS. The
implementation environment can be visualized in the four-
layer stack structure illustrated in Fig. 4.

The network interface layer and the active message layer
are infrastructure layers provided by TOSSIM. The former
simulates the radio communication that occurs at the physical
layer of WSNs, and the latter, built upon the network interface
layer, provides a set of network communication interfaces
implementing the WSN message mechanism. The transaction
layer is where STCP is implemented, based on the inter-
node communication provided by the active message layer.
The application layer is developed for testing the application
scenarios of STCP, where we use Python scripts to simulate
the transaction communication between the base station and
the sensor nodes.

We simulate a WSN system installed in a 20m × 20m
factory workshop with eleven nodes randomly spread in it,
of which one is the base station, and the other ten the
sensor nodes. To improve the quality of radio frequency (RF)
simulation, we simulate the hardware noise floor for each node
as −98.0 dBm, with a standard deviation of 4.0 dBm white
Gaussian noise, to produce a topological model that describes
the signal gains between each two nodes, which is shown
in Fig. 5 in the form of heat map matrix, and we use this
model to feed the closest pattern matching (CPM) algorithm

Node 0
Node 1

Node 2
Node 3

Node 4
Node 5

Node 6
Node 7

Node 8
Node 9

Node 10

Node 0

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

0.0 -75.7 -74.9 -73.7 -70.3 -80.3 -86.0 -92.1 -89.5 -69.1 -79.9

-79.9 0.0 -86.4 -59.3 -77.3 -86.9 -69.3 -96.7 -88.8 -90.6 -86.8

-80.7 -88.0 0.0 -86.4 -88.7 -65.5 -105.6 -92.1 -88.6 -92.8 -93.1

-81.6 -63.0 -88.5 0.0 -59.0 -93.5 -74.2 -85.7 -86.7 -88.7 -89.5

-72.4 -75.2 -85.1 -53.2 0.0 -78.5 -69.9 -82.6 -84.5 -77.4 -85.6

-82.8 -85.1 -62.3 -88.2 -78.9 0.0 -86.0 -93.7 -94.6 -81.4 -83.1

-90.3 -69.3 -104.0 -70.6 -72.0 -87.7 0.0 -84.3 -84.6 -85.3 -75.7

-90.9 -91.2 -85.1 -76.6 -79.2 -89.9 -78.9 0.0 -67.2 -89.8 -89.5

-93.4 -88.4 -86.7 -82.7 -86.3 -95.9 -84.2 -72.3 0.0 -87.4 -93.8

-74.4 -91.6 -92.4 -86.1 -80.6 -84.1 -86.4 -96.4 -88.8 0.0 -84.2

-84.8 -87.5 -92.3 -86.5 -88.5 -85.5 -76.4 -95.7 -95.0 -83.9 0.0

100

90

80

70

60

Gain (dBm
)

Fig. 5. The topology of the experimental WSN system.

that generates a statistical noise model for each sensor node
in the experimental WSN system.

B. Simulation Results

To analyze the performance of our protocol, we compare the
average network traffic and the average energy consumption in
the experimental network between a committed transaction and
a canceled transaction processed by STCP over the execution
time of one transaction, as shown in Fig. 6. Fig. 6a shows
the average network traffic of each sensor node within one
transaction period and Fig. 6b shows the average remaining
energy of each sensor node within one transaction period. The
time interval of the timer is preset as 1650ms and each sensor
node is assigned with an initial energy of 200 J. It can be
interpreted from Fig. 6a and Fig. 6b that, during most of the
transaction period, the network traffic and energy consumption
increase gradually and remain on the same level for both the
committed and the canceled transactions. A 42.5% increase of
network traffic and an 11.9% increase of energy consumption
occur at the final stage of the canceled transaction where the
CANCEL message is broadcast by the base station, which is
reasonable and acceptable.

We also compare the energy consumption caused by STCP
with that caused by the traditional 2PC protocol. We process
ten transactions (five being committed and five being canceled)
using STCP and 2PC respectively and calculate the average
network energy consumption during the transactions. Fig. 7
shows the average remaining energy of each sensor node
during one transaction period processed by STCP and 2PC. An
instance of network remaining energy, in which no transaction
is processed, is given in Fig. 7 as a comparative baseline,
reflecting the normal energy loss in the experimental network.

It can be seen from Fig. 7 that 2PC causes much more
(around 62.8%) energy loss than STCP during the process
of one transaction, due to the complicated interactions re-
quired by 2PC between the coordinator and the participants,
especially at the final stage of a transaction, where a higher



0 200 400 600 800 1000 1200 1400 1600
Time (ms)

0

10

20

30

40

50

60

Ne
tw

or
k 

tr
af

fic
 (F

PS
)

Committed transaction
Canceled transaction

(a)

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

150

160

170

180

190

200

En
er

gy
 (J

)

Committed transaction
Canceled transaction

(b)

Fig. 6. (a) The network traffic and (b) the network energy consumption of
committed and canceled transactions.

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

120

140

160

180

200

En
er

gy
 (J

)

STCP
2PC
No transaction

Fig. 7. The comparison of energy consumption between STCP and 2PC.

message retransmission rate usually takes place. However,
STCP simplifies these interactions through a timer that triggers
the commitment or cancellation of a transaction, thereby better
satisfying the energy demand of WSNs.

V. CONCLUSION

In this paper, we present STCP, a completely defined trans-
action processing protocol for WSN systems, which adapts
better to the demand and characteristics of WSNs than the
existing atomic commit protocols of distributed systems. We
introduce the theoretical design as well as an implementation

framework of STCP. STCP is capable of effectively and
efficiently dealing with data loss and data conflict issues to
ensure data consistency in WSN systems, showing potential
in future WSN applications.

Further research can be made on STCP with networks
having more complicated structures, such as cluster-based
networks, so as to find more possible applications of STCP
in large-scale WSN systems.

REFERENCES

[1] B. Yin, S. Zhou, S. Zhang, K. Gu, and F. Yu, “On efficient processing
of continuous reverse skyline queries in wireless sensor networks,” KSII
Trans. Internet Inf. Syst., vol. 11, no. 4, pp. 1931–1953, 2017.

[2] S. Yang, “IoT stream processing and analytics in the fog,” IEEE
Commun. Mag., vol. 55, no. 8, pp. 21–27, 2017.

[3] K. Wang, Y. Shao, L. Shu, C. Zhu, and Y. Zhang, “Mobile big data
fault-tolerant processing for eHealth networks,” IEEE Netw., vol. 30,
no. 1, pp. 36–42, 2016.

[4] S. Randhawa and S. Jain, “Data aggregation in wireless sensor networks:
Previous research, current status and future directions,” Wireless Pers.
Commun., vol. 97, no. 3, pp. 3355–3425, 2017.

[5] D. Izadi, J. H. Abawajy, S. Ghanavati, and T. Herawan, “A data fusion
method in wireless sensor networks,” Sensors, vol. 15, no. 2, pp. 2964–
2979, 2015.

[6] Y. Yao and J. Gehrke, “The Cougar approach to in-network query
processing in sensor networks,” ACM SIGMOD Rec., vol. 31, no. 3,
pp. 9–18, 2002.

[7] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[8] R. Khoury, T. Dawborn, B. Gafurov, G. Pink, E. Tse, Q. Tse,
K. Almi’Ani, M. Gaber, U. Röhm, and B. Scholz, “Corona: Energy-
efficient multi-query processing in wireless sensor networks,” in Proc.
15th Int. Conf. on Database Systems for Advanced Applications,
Tsukuba, Japan, Apr. 2010, pp. 416–419.

[9] A. Belfkih, C. Duvallet, B. Sadeg, and L. Amanton, “A real-time query
processing system for WSN,” in Proc. 16th Int. Conf. on Ad Hoc
Networks and Wireless, Messina, Italy, Sep. 2017, pp. 307–313.

[10] L. Gürgen, C. Roncancio, C. Labbé, and V. Olive, “Transactional
issues in sensor data management,” in Proc. 3rd Workshop on Data
Management for Sensor Networks: In Conjunction with VLDB 2006,
Seoul, Korea, Sep. 2006, pp. 27–32.

[11] C. Reinke, N. Hoeller, and V. Linnemann, “Adaptive atomic transaction
support for service migration in wireless sensor networks,” in Proc. 7th
Int. Conf. on Wireless and Optical Communications Networks, Colombo,
Sri Lanka, Sep. 2010, pp. 1–8.

[12] C. Reinke, N. Hoeller, J. Neumann, S. Groppe, V. Linnemann, and
M. Lipphardt, “Integrating standardized transaction protocols in service-
oriented wireless sensor networks,” in Proc. 2009 ACM Symp. on
Applied Computing, Honolulu, HI, USA, Mar. 2009, pp. 2202–2203.

[13] S. Obermeier, S. Böttcher, and D. Kleine, “CLCP – A distributed cross-
layer commit protocol for mobile ad hoc networks,” in Proc. 2008 IEEE
Int. Symp. on Parallel and Distributed Processing with Applications,
Sydney, NSW, Australia, Dec. 2008, pp. 361–370.

[14] C. Reinke, N. Hoeller, J. Neumann, S. Groppe, S. Werner, and V. Lin-
nemann, “Analysis and comparison of atomic commit protocols for
adaptive usage in wireless sensor networks,” in Proc. 2010 IEEE Int.
Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing,
Newport Beach, CA, USA, Jun. 2010, pp. 138–145.

[15] C. Reinke, “Adaptive service migration and transaction processing in
wireless sensor networks,” in Proc. 7th Middleware Doctoral Symp.,
Bangalore, India, Nov. 2010, pp. 8–13.

[16] Y. Liu, K. Wang, Y. Lin, and W. Xu, “LightChain: A lightweight
blockchain system for industrial internet of things,” IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3571–3581, 2019.

[17] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making
big data open in edges: A resource-efficient blockchain-based approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp. 870–882, 2019.

[18] L. Briand and Y. Labiche, “A UML-based approach to system testing,”
Softw. Syst. Model., vol. 1, no. 1, pp. 10–42, 2002.


	Introduction
	WSN Transaction Processing Model
	WSN Transaction
	Atomic Transaction Processing
	Concurrency Control Strategy
	Concurrency Control on the Base Station Side
	Concurrency Control on the Sensor Node Side


	Implementation Framework
	Simulation and Results
	Experimental Environment
	Simulation Results

	Conclusion
	References

