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1 Background

Under various acts and regulations, the Canada Border Services Agency (CBSA) conducts inspections of
the Canadian Food Inspection Agency (CFIA) regulated imported commodities to verify compliance. The
CFIA and the CBSA have partnered in a joint initiative to improve the efficiency and effectiveness of those
oversight activities. This initiative focuses on the wood packaging material (WPM). WPM poses a significant
risk because it can act as a pathway for foreign plant pests, diseases, or invasive species. The objective of this
work will be to enhance the effectiveness of CBSA oversight resources by developing predictive analytics and
decision support tools based on statistically valid and scientific principles.

In order to provide objective and defensive risk analysis regarding imported wood packaging materials,
evidence-based research has been proposed. This experiment is based on the data of good packages that
have been shipped to Canada over the past 4 years (2014–2017) and aims at building a classification and
regression model on the historical data for risk assessment and management.

2 Data Profiling and Preprocessing

The original dataset has 20 variables and 85488 observations in total, with Compliance being the target
variable. The two values in the target variable were relabeled respectively as Compliant and Non.Compliant,
with Compliant being the positive class, Non.Compliant being the negative class.

Among the remaining variables, LiveInsect, Frass.Saudust, Phyto, Bark, Tunnels, and Fungi are ex-
amining reasons for non-compliance, which have a high correlation with the prediction target. Besides,
other nuisance variables, e.g., ï..Exam.Extract.No. (with 55729 distinct values), Exam.Date (with 1478
distinct values), Shipper.City (with 14414 distinct values), Shipper.Name (with 37160 distinct values),
Consignee.Name (with 31581 distinct values), etc., should also be removed from the predictor set.

Figure 1: Distribution of target classes.
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Looking at the distribution of target classes on manufactured packaging (MP) packages (Figure 1a) and
non-MP packages (Figure 1b), we could find a very remarkable pattern: the non-compliance has a very few
occurrences among the MP packages. The non-compliant observations only take up 0.322% of the subset of
MP packages, which could be ignored. Thus, this experiment focuses on analyzing the WPM packages and
double material (WPM & MP) packages, which take up 28398 observations in this dataset.

However, the distribution of target classes is still imbalanced among the WPM packages and WPM & MP
packages, as shown in Figure 1b. with the majority class Compliant taking up 85.7% of all observations
and the minority class Non.Compliant only taking up 14.3%. Standard classifier algorithms, having a bias
towards classes that have a large number of instances, could make the classification result overfit to the
majority class, hence more effort should be made to balance the data in the modeling phase.

There could be redundant features in the dataset as well. It is necessary to have an analysis of the correlation
matrix of the data’s attributes, as shown in Figure 2.

Figure 2: Correlation matrix.

The Pearson correlation coefficient measures both strength and direction of a linear relationship between two
variables. The positive or negative value indicates respectively an uphill or downhill linear relationship. To
avoid redundancy, highly correlated variable pairs should not be preserved in the predictor set. Thus, we
select the variables Shipper.Country, Port.of.Entry, Packaging.Material, Goods.Category and Month
as predictors.

We could take a look at the breakdown of this dataset by the selected features (Figure 3).

As is shown in Figure 3b and Figure 3d, there are empty values in variable Goods.Category. Assuming
that the type of goods could be a more significant cause of the non-compliance of a package than the port
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of entry, we first built up a hash table that maps the Goods.Description and Goods.Category to fill up
as many missing Goods.Category as possible, then dropped the observations that still remain empty in
Goods.Category, 16518 observations were kept.

Figure 3: Data breakdown.

In addition, the variable Shipper.Country has 174 distinct countries, while the countries having a subset
of fewer than 200 observations only make up 7.44% of the whole dataset, which is shown in Figure 3a. In
consideration of data fuzzification, the countries in minority (with less than 200 observations) were relabeled
as “Other” and the number of distinct countries was reduced to 37.

Lastly, for evaluating model quality, stratified sampling was applied to the dataset, creating a training set
with 75% of all the observations and a test set with 25% of the observations.

3 Data Modeling

The classification and regression tree (CART) (Breiman et al. 1984) was chosen as the predictive model in this
experiment. CART not only provides a discrete class label as the predicted outcome for each input instance
but also makes a distributional prediction, i.e., calculates an approximate probability, for each predicted
class. Figure 4 shows an example of a CART node, where Compliant is the predicted class (Compliant or
Non.Compliant), 0.05 indicates the predicted probability of non-compliance, 26% refers to the percentage of
observations in the node.
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Figure 4: CART node example.

3.1 Gini Index

CART uses the Gini index as the splitting rule by default (Han, Kamber, and Pei 2011). Gini index, also
known as Gini impurity, is a measurement of the likelihood of incorrect classification of a chosen tuple from a
data partition or training set, given that the tuple was randomly classified according to the distribution of
class labels.

Suppose that D is a data partition with n distinct class labels (Ci, i ∈ {1, 2, 3, . . . , n}) in target variable.
Let Ci,D be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the number of tuples in D Ci,D,
respectively. The impurity of D can be computed by summing the probability pi = |Ci,D|

|D| of a tuple in D
belonging to class Ci times the probability 1− pi of a mistake in categorizing that tuple, written as:

Gini(D) =
n∑

i=1
pi(1− pi) = 1−

n∑
i=1

pi
2. (1)

It reaches its minimum (zero) when all tuples fall into a single target category.

The Gini index considers a binary split for each variable, thus a weighted sum of the impurity on each split is
computed based on each resulting partition. For example, if a binary split on variable A partitions D into
D1 and D2, the Gini index of D given that partitioning is defined as:

GiniA(D) = |D1|
|D|

Gini(D1) + |D2|
|D|

Gini(D2). (2)

For each variable, each of the possible binary splits is considered. The subset that gives the minimum Gini
index for a variable is selected as its splitting subset.

Based on the Gini index of D before and after the data partitioning, the reduction in impurity that would be
incurred by a binary split on variable A could be calculated as below:

∆Gini(A) = Gini(D)−GiniA(D). (3)

Through the tree structure of CART, the Gini indices are computed recursively on each node. The variable
that maximizes the reduction in impurity, or, equivalently, has the minimum Gini index, is selected as the
splitting variable.

3.2 Complexity Parameter

The splitting of a CART stops when its complexity parameter (cp) reduces to a certain value. The cp
in CART measures the minimum improvement needed at each node and is calculated based on the cost
complexity (cc) of the model, which is defined as:

cc =
ntm∑
i=1

µi + λnsplit, (4)
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where ntm is the number of terminal nodes of a given tree, nsplit is the total split number, µi, where
i ∈ {1, 2, 3, . . . , ntm}, is the number of misclassifications on each terminal node, and λ is a penalty term
derived from cross-validation.

In this experiment, the optimized cp value was determined through the tuning length. The tuning length was
set to 10, i.e., 10 different cp values were being used to build the models and the best one was selected from
them.

3.3 Cross-validation

Cross-validation is a model validation technique for assessing how the results of a statistical analysis will
generalize to an independent dataset. One round of k-fold cross-validation partitions a sample of data into
k complementary subsets, using one of the subsets as the training set to perform analysis, and validating
the analysis on the other subsets. In this experiment, a repeated 10-fold cross-validation was applied. The
repeats number was set to 5.

3.4 Receiver Operating Characteristic

The performance of machine learning algorithms is typically evaluated by a confusion matrix as illustrated in
Table 1 (for a binary classification problem). The columns are the Predicted class and the rows are the Actual
class. In the confusion matrix, TP is the number of positive examples correctly classified (true positives),
FP is the number of negative examples incorrectly classified as positive (false positives), FN is the number
of positive examples incorrectly classified as negative (false negatives) and TN is the number of negative
examples correctly classified (true negatives).

Table 1: Confusion matrix.
Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

As discussed before, an imbalanced dataset could produce a model overfit to the majority class, and make
either the true positive rate (TPR = TP

TP+FN ) or the true negative rate (TNR = TN
TN+FP ) unacceptably low.

In this case, the receiver operating characteristic (ROC) could be a proper evaluation metric that takes both
TPR and TNR into consideration. The ROC is usually represented as a curve, i.e., the ROC curve. The ROC
curve is created by plotting the TPR against the false positive rate (FPR = 1−TNR). To measure the ROC
of a model for model comparison, we simply compute the area under the curve (AUC) of the ROC curve, a
model with higher AUC implies a better ROC and better model quality.

3.5 Data Balancing Techniques

Due to the inherent complex characteristics of the imbalanced dataset, multiple approaches were taken to
handle this issue, e.g., class weighting, data resampling, and synthetic sampling. In this experiment, an
original decision tree without any data balancing technique is also included for comparison.

3.5.1 Class Weighting

Class weights could be incorporated into the model by assigning a weight to each category of the target
variable. To make the model invariant towards sample bias, the minority class was assigned with a lower
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weight while the majority class was with a higher weight. The class weights were calculated as follows:{
wmajor = 1

2nmajor
,

wminor = 1
2nminor

,
(5)

where wmajor and wminor represent respectively the weights for majority class and minority class. The nmajor
and nminor refer to the number of observations in the majority and minority classes. This formula ensures
that the weights of all the observations sum up to 1.

3.5.2 Data Resampling

Data resampling refers to the process of data down-sampling or data up-sampling. In a binary classification
problem, either down-sampling or up-sampling could be applied to deal with imbalanced data. Down-sampling,
also known as under-sampling, creates a balanced dataset by matching the number of samples in the minority
class with a random sample from the majority class. Up-sampling, also known as over-sampling, matches the
number of samples in the majority class with duplicating data from the minority class.

3.5.3 Data Synthesizing

Instead of duplicating observations, data synthesizing methods create new instances in the neighborhoods of
observations of the minority class, by operating in feature space rather than data space. Two data synthesizing
algorithms were applied in this experiment, respectively random over-sampling examples (ROSE) (Menardi
and Torelli 2014) and synthetic minority over-sampling technique (SMOTE) (Chawla et al. 2002).

ROSE is a data balancing algorithm that deals especially with binary classification problems. The algorithm
can be described as below.

Consider a training set T of size n. Its generic instance can be described as (xi, yi), where the class label yi

belongs to the set of target classes {C1, C2} and xi is a vector consists of predictor variables with a probability
density function f(x). Let nj < n be the size of Cj , where j = 0, 1. The ROSE procedure generates one new
artificial instance in the following steps:

1. Select y∗ = Cj with probability 1
2 .

2. Select (xi, yi) in T , such that yi = y∗ with probability pi = 1
nj
.

3. Sample x∗ from KHj
(·,xi), with KHj

a probability distribution centered at xi and depending on the
covariance matrix Hj .

Essentially, we draw from the training set an observation belonging to one of the two classes {C1, C2}, and
generate a new instance (x∗, y∗) in its neighborhood, where the neighborhood width is governed by Hj .

SMOTE generates synthetic instances for the minority classes by interpolation. For example, let a minority
class in the training set contain Tminor instances, which is to be over-sampled to TN

minor, where N > 1.
Considering an instance from the minority class with a feature vector xi, where i ∈ {1, 2, 3, . . . , Tminor}, for
each xi, SMOTE generates new instances around it in the following steps:

1. Select k nearest neighbors of xi from the Tminor minority instances.
2. Select one instance xi(nn) randomly from the k nearest neighbors, where nn ∈ {1, 2, 3, . . . , k}, and

generate a new instance xi,j based on the feature difference of xi(nn) − xi and a random number ζ
between 0 and 1:

xi,j = xi + ζ(xi(nn) − xi). (6)

3. Repeat step 2 for N times, N new instances xi,j , where j ∈ {1, 2, 3, . . . , N} will be generated.

We choose 5 nearest neighbors for sampling and the size N of over-sampling depends upon the proportion of
the minority class in the dataset.
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4 Results and Conclusions

To compare the performance between different models and find the best one from the models with different
data balancing approaches, 6 CART models were being trained and tested in this experiment, they are
respectively the original model (without using data balancing approach), the weighted model, the down-
sampled model, the up-sampled model, the ROSE model, and the SMOTE model. the ROC was used as the
model evaluation metric. The ROC curves for different models are illustrated in Figure 5.

Figure 5: ROC curves of 6 models.

Generally speaking, a better model has a higher AUC value. According to Figure 5, the weighted model,
down-sampled model, and up-sampled model are relatively better than the original model, ROSE model,
and SMOTE model. The low performance of the ROSE model and SMOTE model could be caused by the
unreasonable artificial instances being synthesized by the algorithms. This implies that such data synthesizing
algorithms may not fit well with this specific dataset.

Figure 6: ROC of 6 models.

In this risk analysis study of the wood packaging material, the main objective is to find out as many
non-compliant packages as possible and avoid an actually non-compliant package being mistakenly classified,
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i.e., the type I error (the rejection of a true null hypothesis, equivalent with FP) should be minimized as
much as possible. Figure 6 shows explicitly the TPR and TNR on the training set of the 6 models in the
shape of box plots, where “Sens” refers to sensitivity, which is synonymous for TPR, and “Spec” refers to the
specificity, which is synonymous for TNR.

As far as the median value of TNR is concerned, the down-sampled model, weighted model, and up-sampled
model show a distinct better performance in lowering the type I error. The down-sampled model, although
having the highest TNR median among the 3 models, could cause some distortion to the dataset, as the
nature of down-sampling is to shrink the data and thus some patterns could be lost during this process. The
up-sampled model, on the other hand, may amplify some existing patterns even noises in the dataset and
make the model overfit to the training set. Thus, the weighted model could be a good and neutral choice, as
no modification on the original data is involved in this model.

Table 2: Confusion matrices for different models.
Actual Compliant Actual Non.Compliant

Original model
Predicted Compliant 16486 1142
Predicted Non.Compliant 136 282

Weighted model
Predicted Compliant 12622 175
Predicted Non.Compliant 4000 1249

Down-sampled model
Predicted Compliant 12459 169
Predicted Non.Compliant 4163 1255

Up-sampled model
Predicted Compliant 12401 163
Predicted Non.Compliant 4221 1261

ROSE model
Predicted Compliant 12352 158
Predicted Non.Compliant 4270 1266

SMOTE model
Predicted Compliant 13325 319
Predicted Non.Compliant 3297 1105

To have a more unbiased review of the 6 models, we prepared a test set in advance, which is derived from the
stratified sampling of the original dataset. The predicting outcomes on the test set are shown in the form of
confusion matrices in Table 2. Still, the down-sampled model, weighted model, and up-sampled model have
better outcomes with low type I errors.
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